

AXP802 Datasheet

PMIC Optimized For Multi-Core High-Performance System

Revision 1.0

2017.07.05

Revision History

Revision	Date	Description
V 1.0	2017.07.05	Initial Release Version

1 Overview

AXP802 is customized PMIC for multi-power rails required SOC platform.

AXP802 is a highly integrated PMIC targeting at Li-battery (Li-ion or Li-polymer) applications that require multi-channel power conversion outputs. It provides an easy and flexible power management solution for processors to meet the increasingly complex and accurate requirements on power control.

AXP802 comes with an adaptive USB3.0-compatible Flash Charger that supports up to 2.8A charge current. It also supports 22 channels power outputs (including 6-CH DCDCs). To ensure the security and stability of the power system, AXP802 provides multiple channels 12-bit ADC for voltage/current/temperature monitor and integrates protection circuits such as OVP, UVP, OTP, and OCP. Moreover, AXP802 features a unique E-Gauge™(Fuel Gauge) system, making power gauge easy and exact.

In addition, AXP802 embraces a fast interface for the system to dynamically adjust output voltage and enable power outputs so that the battery life can be extended to the largest extent.

Besides, AXP802 features an IPS™ (Intelligent Power Select) circuit to transparently select power path among ACIN/USB and Li-battery to system load.

AXP802 is available in 8mm x 8mm 68-pin QFN package, and the package is Pb free.

Applications:

- Tablet, Smart phone, DVR, Desktop, Dongle
- UMPC-like, Student Computer

2 Feature

- -- 6 Frequency spread DCDCs
 - ◆ DCDC1: PFM/PWM, 1.6-3.4V, 0.1V/step, 19 steps, IMAX=1.5A
 - ◆ DCDC2: PFM/PWM, 0.5-1.20V, 10mV/step, 1.22-1.30V, 20mV/step, IMAX=3A, DVM
 - ◆ DCDC3: PFM/PWM, 0.5-1.20V, 10mV/step, 1.22-1.30V, 20mV/step, IMAX=3A, DVM
 - DCDC4: PFM/PWM, 0.5-1.20V,
 10mV/step, 1.22-1.30V, 20mV/step,
 IMAX=3A, DVM
 - ◆ DCDC5: PFM/PWM, 0.8-1.12V, 10mV/step, 1.14-1.84V, 20mV/step, IMAX=2.5A, DVM, default set by DC5SET
 - DCDC6: PFM/PWM, 0.6-1.10V, 10mV/step, 1.12-1.52V, 20mV/step, IMAX=2.5A, DVM
 - ◆ DCDC2/3/4:71+5 steps; DCDC5:33+37 steps; DCDC6:51+21steps
 - DVM(Dynamic Voltage scaling Management) ramp rate: 2.5mV/us at DCDC frequency 3MHz
 - Dual-Phase: DCDC2/3 can be set as
 Dual-phase, and DCDC5/6 can be set as
 another Dual-phase

--16 LDOs & Switch

- RTCLDO: fixed 3.0V or 1.8V,
 IMAX=100mA, always enable
- ALDO1: Analog LDO, 0.7-3.3V,
 100mV/step, 27 steps, IMAX=500mA,

input is ALDOIN

- ◆ ALDO2: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=300mA, input is ALDOIN
- ◆ ALDO3: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=200mA, input is ALDOIN
- DLDO1: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps; IMAX=500mA, input is DLDOIN
- DLDO2: Analog LDO, 0.7-3.4V,
 100mV/step; 28 steps; 3.4-4.2V,
 200mV/step, 4 steps. IMAX=400mA,
 input is DLDOIN
- DLDO3: Analog LDO, 0.7-3.3V, 100mV/step; 27 steps, IMAX=300mA, input is DLDOIN
- DLDO4: Analog LDO, 0.7-3.3V,
 100mV/step; 27 steps, IMAX=500mA,
 input is DLDOIN
- ◆ ELDO1: Digital LDO, 0.7-1.9V, 50mV/step; 25 steps, IMAX=400mA, input is ELDOIN
- ELDO2: Digital LDO, 0.7-1.9V, 50mV/step;
 25 steps, IMAX=200mA, input is ELDOIN
- ELDO3: Digital LDO, 0.7-1.9V, 50mV/step;
 25 steps, IMAX=200mA, input is ELDOIN
- ◆ FLDO1: Digital LDO, 0.7-1.45V, 50mV/step, 16 steps, IMAX=300mA, input is FLDOIN

- ◆ FLDO2: Digital LDO, 0.7-1.45V, 50mV/step, 16 steps, IMAX=100mA, input is FLDOIN
- GPIO0LDO: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=100mA, input is ALDOIN
- ◆ GPIO1LDO: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=150mA, input is ALDOIN ▲
- ◆ CHGLED: GND switch for motor or LED, IMAX=100mA
- --TWI(Two wire serial interface) supporting standard and quick slave mode, slave Address is 0x68/0x69 or 0x6A/6B by customer
- --RSB(Reduced Serial Bus) supporting for Allwinner platform, slave Address is 0x01D1 or 0x0273 by customer
- --Intelligent Power Select (IPS), VBUS-IPSOUT is $125m\Omega \ typically, \ and \ ACIN-IPSOUT \ is \ 80m\Omega$ typically.
- --Adaptive Li battery PWM charger with current total up to 2.8A
- --Battery Fuel Gauge and coulomb counter
- --Power output on/off press key
- --Internal Temperature sensor and protection
- --Safe and Soft start up

3 Typical Application

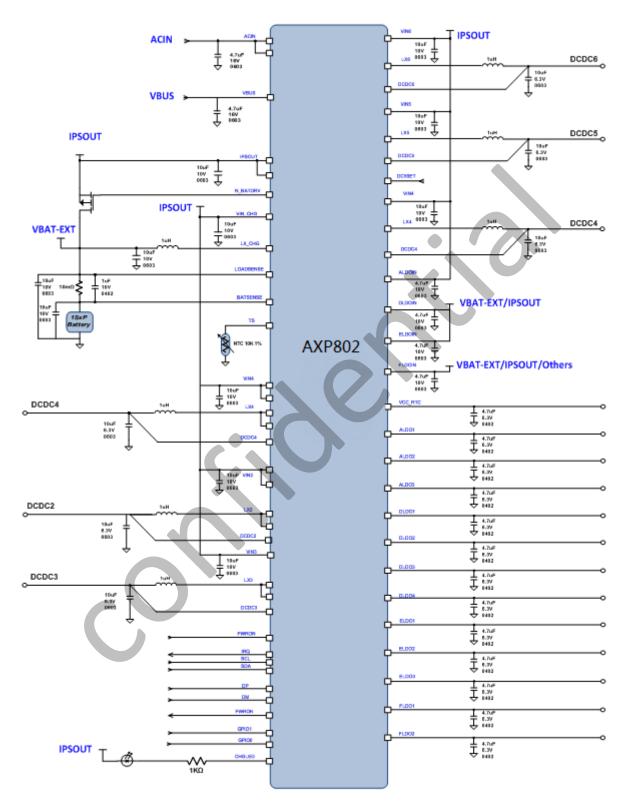


Figure 1. AXP802 Typical Application Diagram

Declaration

X-POWERS CANNOT ASSUME RESPONSIBILITY FOR USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY ENTIRELY EMBODIED IN AN X-POWERS PRODUCT. NO CIRCUIT PATENT LICENSES, COPYRIGHTS, OR OTHER INTELLECTUAL PROPERTY RIGHTS ARE IMPLIED. X-POWERS RESERVES THE RIGHT TO MAKE CHANGES TO THE SPECIFICATIONS AND PRODUCTS AT ANY TIME WITHOUT NOTICE.

CONTENTS

Revision History	••••••	2
1 Overview		3
2 Feature		3
3 Typical Application		5
Declaration		6
CONTENTS		7
4 Pin Map		8
5 Pin Description		
6 Block Diagram		12
7 Absolute Maximum Ratings		13
8 Electrical Characteristics		14
9 Control and Operation		21
9.1 Power On/Off And Power Sequences		
9.2 IPS (Intelligent Power Select)		
9.3 BC Detection Module		
9.4 Adaptive PWM Charger		
9.5 Multi-Power Outputs		
9.6 ADC		
9.7 Fuel Gauge		39
9.8 Interrupt Controller		40
9.9 TWSI		40
10 Register List		
11 Register Description	••••••	44
12 Packago		82

4 Pin Map

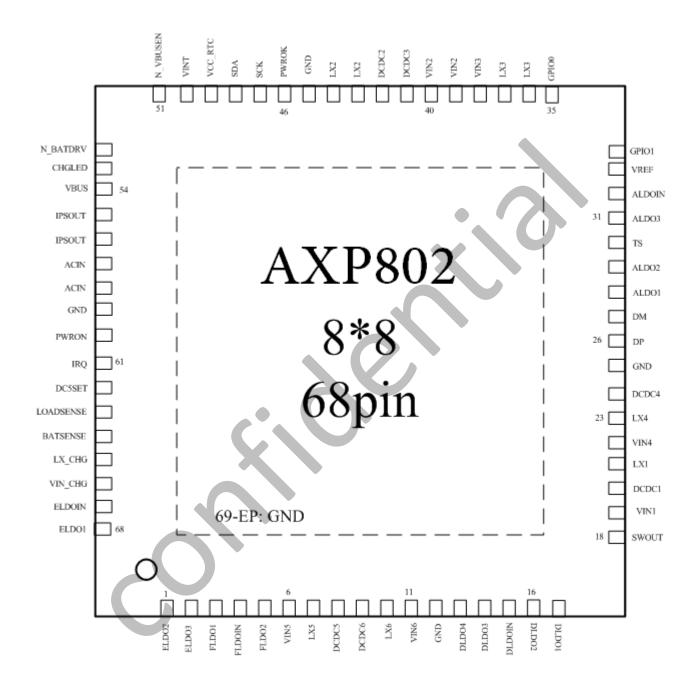


Figure 2. AXP802 Pin Map

5 Pin Description

Table 5-1

N um	Name	Туре	Description
1	ELDO2	0	Output pin of ELDO2
2	ELDO3	0	Output pin of ELDO3
3	FLDO1	0	Output Pin of FLDO1
4	FLDOIN	PI	FLDOs input source
5	FLDO2	0	Output Pin of FLDO2
6	VIN5	PI	DCDC5 input source
7	LX5	10	Inductor Pin for DCDC5
8	DCDC5	1	DCDC5 feedback pin
9	DCDC6	1	DCDC6 feedback pin
10	LX6	10	Inductor Pin for DCDC6
11	VIN6	PI	DCDC6 input source
12	GND	G	GND for internal analog circuit
13	DLDO4	0	Output Pin of DLDO4
14	DLDO3	0	Output Pin of DLDO3
15	DLDOIN	PI	DLDOs input source
16	DLDO2	0	Output Pin of DLDO2
17	DLDO1	0	Output Pin of DLDO1
18	SWOUT	0	Output pin of switch form DCDC1
19	VIN1	PI	DCDC1 input source
20	DCDC1	_	DCDC1 feedback and Switch(from DCDC1 to SWOUT) input pin
21	LX1	10	Inductor Pin for DCDC1
22	VIN4	PI	DCDC4 input source
23	LX4	10	Inductor Pin for DCDC4
24	DCDC4	1	DCDC4 feedback pin
25	GND	G	GND for internal analog circuit
26	DP	ı	Charger detection, USB D+
27	DM	I	Charger detection, USB D-
28	ALDO1	0	Output pin of ALDO1
29	ALDO2	0	Output pin of ALDO2
30	TS	I	Battery Temperature Sensor Input or an External ADC Input
31	ALDO3	0	Output pin of ALDO3
32	ALDOIN	PI	ALDOs and internal module input source
33	VREF	0	Internal reference voltage, connect a 1uF capacitor to ground

N um	Name	Туре	Description			
			General purpose I/O or LDO by REG92H. When it's digital input,			
24	60104	by REG93H.				
34	GPIO1	10	typically. When it's digital output, the logic high level is decided			
			by REG93H.			
			General purpose I/O/ADC input or LDO by REG90H. When it's			
35	GPIO0	10	digital input, the logic high level is 1.5V, and the logic low level is			
55	GPIOU	10	0.5V typically. When it's digital output, the logic high level is			
			decided by REG91H.			
36	LX3	Ю	Inductor Pin for DCDC3			
37	LX3	10	Inductor Pin for DCDC3			
38	VIN3	PI	DCDC3 input source			
39	VIN2	PI	DCDC2/3 input source			
40	VIN2	PI	DCDC2 input source			
41	DCDC3	I	DCDC3 feedback pin			
42	DCDC2	I	DCDC2 feedback pin			
43	LX2	10	Inductor Pin for DCDC2			
44	LX2	10	Inductor Pin for DCDC2			
45	GND	G	GND for internal analog circuit			
46	PWROK	0	Power Good pin, push-pull output , and pull to VCC_RTC internal			
47	SCK		Clock pin for serial interface, need a 2.2KΩ Pull High.			
48	SDA	10	Data pin for serial interface, need a $2.2 \text{K}\Omega$ Pull High.			
49	VCC_RTC	0	Output pin of RTCLDO			
50	VINT	PO	Internal logic power, 1.8V			
51	N_VBUSEN	10	VBUS select or not setting pin			
52	N_BATDRV	О	BAT to PS extern PMOS driver			
53	CHGLED	0	Charger status indication			
54	VBUS	PI	VBUS input			
55	IPSOUT	РО	System power source			
56	IPSOUT	РО	System power source			
57	ACIN	PI	ACIN input			
58	ACIN	PI	ACIN input			
59	GND	G	GND for internal analog circuit			
60	PWRON	I	Power On-Off key input,Internal 100k pull high to VINT pin			
61	IRQ	0	Interrupt output, open drain output, need a 10KΩ Pull High			
63	DOUGLE	1	Setting DCDC5 default Output Voltage, this pin must tied to			
62	DC5SET	l	GND/VINT or floating.			

N um	Name	Туре	Description		
63	LOADSENSE	1	PWM Charger Current Sense Resistance Positive Input		
64	BATSENSE	1	PWM Charger Current Sense Resistance Negative Input		
65	LX_CHG	10	Inductor Pin for PWM Charger		
66	VIN_CHG	1	Charger input source		
67	ELDOIN	PI	ELDOs input source		
68	ELDO1	0	Output pin of ELDO1		
69	EP	G	Exposed pad, connected to PCB ground		

6 Block Diagram

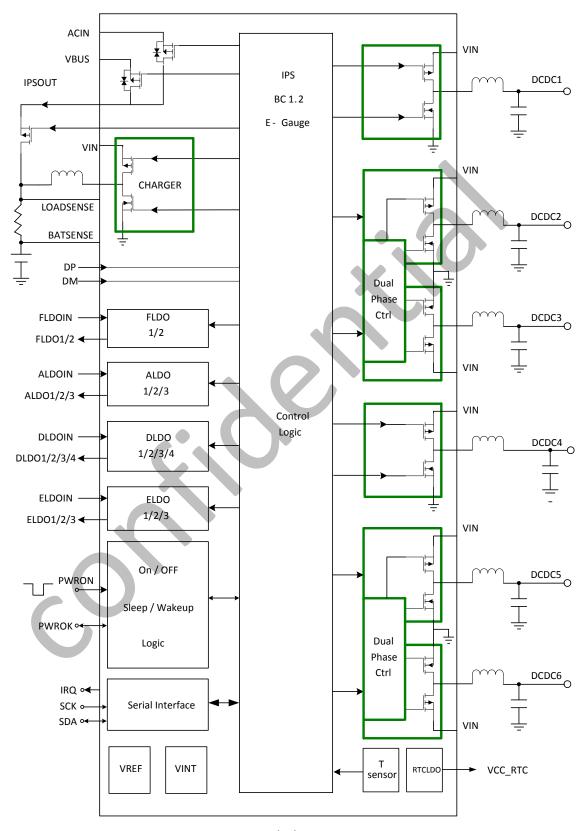


Figure 3. AXP802 Block Diagram

7 Absolute Maximum Ratings

Table 7-1

SYMBOL	DESCRIPTION	VALUE	UNITS
VBUS/ACIN	Input Voltage Range	-0.3 to 11	V
V _{RIO1}	Voltage Range on pins IRQ, PWROK -0.3 to 5		V
V_{RIO2}	Voltage Range on pins SCK, SDA, GPIO0, GPIO1,	-0.3 to IPSOUT+0.3	V
	N_VBUSEN		
V _{RIO3}	Voltage Range on pin PWRON	-0.3 to 2.1	V
T _j	Operating Junction Temperature Range	125	$^{\circ}$
T _A	Operating Temperature Range	-20 to 85	$^{\circ}\!\mathbb{C}$
Ts	Storage Temperature Range	-40 to 150	$^{\circ}\!\mathbb{C}$
T _{LEAD}	Maximum Soldering Temperature (at leads, 10sec)	260	$^{\circ}\!\mathbb{C}$
V _{ESD}	Maximum ESD stress voltage, Human Body Model	>2000	V
P _D	Internal Power Dissipation	TBD	mW

8 Electrical Characteristics

Table 8-1

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
ACIN						
V _{ACIN}	ACIN input voltage		3.5	5	7	V
I _{ACLIM}	ACIN input current limit		1500	1500	4000	mA
R _{ACIN}	Internal Ideal Diode On Resistance	ACIN to IPSOUT		80		mΩ
VBUS						
V _{VBUSIN}	VBUS Input Voltage		3.5	5	7	V
I _{BUSLIM}	VBUS input current limit		100	500	4000	mA
V _{UVLO}	VBUS Under Voltage Lockout			3.5		V
V _{OUT}	IPSOUT Output Voltage		2.9		5.0	V
R _{VBUS}	Internal Ideal Diode On Resistance	VBUS to IPSOUT		125		mΩ
Battery Ch	arger					
V_{TRGT}	BAT Charge Target Voltage		4.1	4.2	4.35	V
I _{CHRG}	Charge Current		200	1200	2800	mA
I _{TRKL}	Trickle Charge Current Ratio to I _{CHRG}			10%		mA
V_{TRKL}	Trickle Charge Threshold Voltage	>		3.0		V
ΔV_{RECHG}	Recharge Battery Threshold Voltage	Threshold Voltage Relative to V _{TARGET}		-100		mV
T _{TIMER1}	Charger Safety Timer Termination Time	Trickle Mode	40	50	70	min
T _{TIMER2}	Charger Safety Timer Termination Time	CC Mode	360	480	720	min
I _{END}	End of Charge Indication Current Ratio to I _{CHRG}	CV Mode	10%	10%	20%	mA
I _{TOLER}	The tolerance of charge current	I _{CHRG} = 0.2A - 2.8A	±3%	±5%	±10%	mA
V_{TOLER}	The tolerance of charge target voltage				±0.5%	V
NTC						

	we, 0					
	Cold Temperature Fault					
$V_{\text{LTF-work}}$	Threshold Voltage For Battery	Set by REG3CH	0	3.226	3.264	V
	Work				3.264	
$V_{HTF-work}$	Hot Temperature Fault Threshold	Set by REG3DH	0	0.282	3 264	V
V HTF-work	Voltage For Battery Work	Set by REGSDIT		0.202	3.204	V
	Cold Temperature Fault					
$V_{LTF-charge}$	Threshold Voltage For Battery	Set by REG38H	0	2.112	3.264	V
	Charge					
V	Hot Temperature Fault Threshold	Cat has DECOOL	0	0.207	2.264	V
$V_{HTF-charge}$	Voltage For Battery Charge	Set by REG39H	0	0.397	3.264	V
Off Mode (Current					
I _{BATOFF}	OFF Mode Current	BAT=3.7V		40		μΑ
DCDC					•	
f _{OSC}	Oscillator Frequency	Default		3		MHz
L	Inductor value			1.0		μН
DCDC1)		•	
	Input Current	PFM Mode		F.0		
I _{VIN1}		I _{DCDC1} =0		50		μΑ
I _{LimDC1}	Switch Current Limit of PMOS	PWM Mode		2000		mA
I _{DCDC1}	Available Output Current	PWM Mode		1500		mA
V _{DCDC1}	Output Voltage		1.6	3.3	3.4	٧
C _{OUT1}	Output capacitor value		10	10*2	66	μF
DCDC2			I			
	1 10	PFM Mode		50		
I _{VIN2}	Input Current	I _{DCDC2} =0		50		μΑ
I _{LimDC2}	Switch Current Limit Per PMOS	PWM Mode		3900		mA
I _{DCDC2}	Available Output Current	PWM Mode		3000		mA
V_{DCDC2}	Output Voltage		0.5	0.9	1.3	V
C _{OUT2}	Output capacitor value		10	10*2	66	μF
DCDC3	1		1	l	l	
		PFM Mode				
I _{VIN3}	Input Current	I _{DCDC3} =0		50		μΑ
I _{LimDC3}	Switch Current Limit Per PMOS	PWM Mode		3900		mA
I _{DCDC3}	Available Output Current	PWM Mode		3000		mA
V _{DCDC3}	Output Voltage		0.5	0.9	1.3	V

	7W 27 8	1	1			1
C _{OUT3}	Output capacitor value		10	10*2	66	μF
DCDC4						
I _{VIN4}	Input Current	PFM Mode		50		μА
'VIN4	input current	I _{DCDC4} =0		30		μΑ
I _{LimDC4}	Switch Current Limit of PMOS	PWM Mode		3900		mA
I _{DCDC4}	Available Output Current	PWM Mode		3000		mA
V_{DCDC4}	Output Voltage		0.5	0.9	1.3	V
C _{OUT4}	Output capacitor value		10	10*2	66	μF
DCDC5						
1	Input Current	PFM Mode		50		μΑ
I _{VIN4}	input current	I _{DCDC5} =0		30		μΑ
I _{LimDC5}	Switch Current Limit of PMOS	PWM Mode		3000		mA
I _{DCDC5}	Available Output Current	PWM Mode		2500		mA
V_{DCDC5}	Output Voltage	DC5SET is floating	0.8	1.24	1.84	V
C _{OUT4}	Output capacitor value		10	10*2	66	μF
DCDC6						
I _{VIN6}	Input Current	PFM Mode I _{DCDC6} =0		50		μΑ
I _{LimDC6}	Switch Current Limit of PMOS	PWM Mode		3000		mA
I _{DCDC6}	Available Output Current	PWM Mode		2500		mA
V _{DCDC6}	Output Voltage		0.6	0.9	1.52	V
C _{OUT6}	Output capacitor value		10	10*2	66	μF
RTCLDO (a	always on)					
V _{RTCLDO}	Output Voltage	I _{RTCLDO} =1mA		1.8		V
I _{RTCLDO}	Output Current			60		mA
ALDO1					•	•
V _{ALDO1}	Output Voltage	I _{ALDO1} =1mA	0.9		3.3	V
I _{ALDO1}	Output Current			500		mA
Iq	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO1} =3V,f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{ALDO1} =1.8V,I _{ALDO1} =10mA		40		μVRMS
ALDO2		1	1	I.	I	I
V _{ALDO2}	Output Voltage	I _{ALDO2} =1mA	1.8		3.3	V
I _{ALDO2}	Output Current			300		mA
IQ	Quiescent Current			60		μΑ
				1	l	'

PSRR	Power Supply Rejection Ratio	V _{ALDO2} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{ALDO2} =1.8V,I _{ALDO2} =10mA		40		μVRMS
ALDO3						_
V_{ALDO3}	Output Voltage	I _{ALDO1} =1mA	0.7	3.3	3.3	V
I _{ALDO3}	Output Current			200		mA
I_Q	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO3} =3V, f=1kHz		70		dB
e_N	Output Noise,20Hz-80KHz	V _{ALDO3} =1.8V,I _{ALDO3} =10mA		40		μVRMS
DLDO1						
V _{DLDO1}	Output Voltage	I _{DLDO1} =1mA	0.7	3.3	3.3	V
I _{DLDO1}	Output Current			500		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO1} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO1} =1.8V,I _{DLDO1} =10mA		40		μVRMS
DLDO2						1
V _{DLDO2}	Output Voltage	I _{DLDO2} =1mA	0.7	2.9	4.2	V
I _{DLDO2}	Output Current			400		mA
IQ	Quiescent Current			60		μА
PSRR	Power Supply Rejection Ratio	V _{DLDO2} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO2} =1.8V,I _{DLDO2} =10mA		40		μVRMS
DLDO3					l	1
V _{DLDO3}	Output Voltage	I _{DLDO3} =1mA	0.7	2.9	3.3	V
I _{DLDO3}	Output Current			300		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO3} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO3} =1.8V,I _{DLDO3} =10mA		40		μVRMS
DLDO4					l	1
V _{DLDO4}	Output Voltage	I _{DLDO4} =1mA	0.7	3.3	3.3	V
I _{DLDO4}	Output Current			500		mA
I _Q	Quiescent Current			60		μА
PSRR	Power Supply Rejection Ratio	V _{DLDO4} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO4} =1.8V,I _{DLDO4} =10mA		40		μVRMS
ELDO1			1	ı	I	1
.,	Output Voltage					_
V _{ELDO1}	(1.8V for AXP802D)	I _{ELDO1} =1mA	0.7	1.8	1.9	V

I _{ELDO1}	Output Current			400		mA
Ι _Q	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO1} =1.2V, f=1kHz		65		dB
ELDO2					•	
V _{ELDO2}	Output Voltage	I _{ELDO2} =1mA	0.7	0.9	1.9	V
I _{ELDO2}	Output Current			200		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO2} =1.2V, f=1kHz		65		dB
ELDO3		•				
V _{ELDO3}	Output Voltage	I _{ELDO3} =1mA	0.7	1.8	1.9	V
I _{ELDO3}	Output Current			200		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO3} =1.2V, f=1kHz		65		dB
FLDO1					•	
V _{FLDO1}	Output Voltage	I _{FLDO1} =1mA	0.7	0.9	1.45	V
I _{FLDO1}	Output Current	. 0		300		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{FLDO1} =1.2V, f=1kHz		65		dB
FLDO2						
V _{FLDO2}	Output Voltage	I _{FLDO2} =1mA	0.7		1.45	V
I _{FLDO2}	Output Current			100		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{FLDO2} =1.2V, f=1kHz		65		dB
GPIO0LDO						
$V_{GPIOOLDO}$	Output Voltage	REG90H[2:0]=011,	0.7		3.3	V
	21.12	I _{GPIOOLDO} =1mA		400		
I _{GPIO0LDO}	Output Current	REG90H[2:0]=011		100		mA
Ι _Q	Quiescent Current	REG90H[2:0]=011		35		μΑ
PSRR	Power Supply Rejection Ratio	REG90H[2:0]=011 V _{GPIO0} =3V, f=1kHz		65		dB
GPIO1LDO	<u>I</u>	0.100 /		<u> </u>	l	
V _{GPIO1LDO}	Output Voltage	REG92H[2:0]=011, I _{GPIO1LDO} =1mA	0.7		3.3	V
I _{GPIO1LDO}	Output Current	REG92H[2:0]=011		150		mA
IQ	Quiescent Current	REG92H[2:0]=011		35		μΑ
	1	1			1	

	JW27 J		DECOMPTS OF STA				
PSRR	Power Supply Rejectio	n Ratio	REG92H[2:0]=011		65		dB
			V _{GPIO1} =3V, f=1kHz				
CHGLED				<u> </u>		<u> </u>	
R _{CHGLED}	Internal Ideal Resistan	ce	Supply Voltage is 0.3V		2		Ω
TWSI			1			T T	
V _{CC}	Input Supply Voltage			1.8	3.3		V
Addr	TWSI Slave Address (7	bits)			0x34	0x35	
f_{SCK}	Clock Operating Frequ	ency			400		kHz
V _{IL}	SCK/SDA Logic Low Vo	ltage	SDA is Open drain pin			0.3*V _{cc}	V
V_{IH}	SCK/SDA Logic Low Vo	ltage	3DA 13 Open drain pin	0.7*V _{CC}			V
t_f	Clock Data Fall Time		2.2Kohm Pull High		60		ns
t _r	Clock Data Rise Time		2.2Kohm Pull High		100		ns
RSB	•			X			
Addr	TWSI Slave Address				0x01D1	0x0273	
VINT						I I	
V _{INT}	Internal power supply circuit	for logic	(0)		1.8		V
Related IC	D: PWRON		A	II.		<u> </u>	
R _{pull-up}	Internal resister to VINT	C		50	100		ΚΩ
V _{IL}	Logic Low Voltage				0.5		V
V _{IH}	Logic High Voltage				1.3	2.1	V
Related IC	D: IRQ					<u> </u>	
V _{IL}	Logic Low Voltage	IRQ is ope	en drain output pin, pull			0.3	V
V _{IH}	Logic High Voltage	•	lower (V_{IO}) by 10KΩ	0.7*V _{IO}		V _{IO}	V
	D: PWROK			1			
V _{IL}	Logic Low Voltage					0.3	V
V _{IH}	Logic High Voltage		push-pull output pin, V _{RTCLDO} internal	0.7* V _{RTCLDO}		V _{RTCLDO}	V
Related IC	 D: GPIO0			• RICLDO			
V _{IL}	Logic Low Voltage				0.5		V
V _{IH}	Logic High Voltage	REG90H[2	2:0]=010, digital input		1.3		
V _{IL}	Logic Low Voltage	BECOUPLE	2:0]=000, drive low		1.5	0.3	
v IΓ	Logic Low voitage	_	2:0]=000, drive low 2:0]=001, drive high			0.3	v
V_{IH}	Logic High Voltage	_	el set by REG91H)	0.7	3.3	3.3	V
		(iligii iev	C. JCC Dy NEGJIII)	j			

V _{IL}	Logic Low Voltage	REG92H[2:0]=010, digital input		0.5		V
V _{IH}	Logic High Voltage			1.3		V
V _{IL}	Logic Low Voltage	REG92H[2:0]=000, drive low			0.3	V
V _{IH}	Logic High Voltage	REG92H[2:0]=001, drive high	0.7	3.3	3.3	V
		(high level set by REG93H)				V

9 Control And Operation

When AXP802 works, the TWSI (two wire serial interface) SCK/SDA pin is pulled up to system IO power, and this interface can be used by HOST to access and adjust AXP802's working status. The RSB interface is fixed for Allwinner SOC platform.

Note that the external power hereinafter is ACIN or VBUS input.

9.1 Power On/Off And Power Sequences

PMIC has power off and power on status. When at off state, all voltage outputs are turned off except VCC_RTC, IPS, VINT and charger. At this time if powered by battery, the total power consumption is typically 40uA.

9.1.1 Power On/Off Sources

Power on source

Below are the 2 power up sources supported by AXP802 in mechanical off state:

- 1. Charger insertion (including ACIN and VBUS insertion); or
- 2. Power on key pressed

Power off source

Below are the few sources that can trigger power down of PMIC:

- 1. ALDOIN $< V_{OFF}$ (indicating IPSOUT too low); or
- 2. Faulty condition; or
- 3. Power on key pressed; or
- 4. write 1 to REG32[7]

Power on from charger insertion

The PMIC will start the power on sequence by a charger insertion. A charger insertion is detected from a rising voltage on the ACIN/VBUS node. If 4.1V< ACIN/VBUS < 7.0V, the charger will start charging immediately and autonomously. The existence of ACIN/VBUS is stored in REG 00H[7/5].

Power on from power key pressed

The Power On Key(POK) can be connected between PWRON pin and GND of AXP802. AXP802 can automatically identify the status and then correspond respectively.

The PMIC should be able to start the power on sequence from a power on key pressed. The PMIC has a

configurable timer to detect the power on key hold time. Power on key signal in AXP802 is referred as POK. Once falling edge is detected on POK, PMIC timer will start counting the hold time. POK signal has to be low for at least 32ms for it to be considered a valid signal. If the power on key hold time exceeds the timer threshold (ONLEVEL determined by REG36H [7:6]), the PMIC will start the power on sequence. Otherwise the PMIC will remain off.

Power off from ALDOIN< VOFF

PMIC will constantly monitor voltage level of ALDOIN which is connected to IPSOUT. When VALDOIN < VOFF (default is 2.9V, set in REG 31H[2:0]), PMIC will force shutdown. There will be 500us de-bounce circuit for ALDOIN detection and adjusted hysteresis voltage to prevent false trigger. After force shutdown occurred, PMIC will remain off and wait for power on event to boot up.

VOFF and the compensated hysteresis voltage as below:

Table 9-1

V _{OFF} condition	VX condition (Hysteresis)
V _{OFF} <= 3.0V	0.3V
V _{OFF} = 3.1V	0.2V
V _{OFF} = 3.2V or 3.3V	0.1V

Power off due to faulty condition

PMIC will force shutdown once faulty event happened. Faulty event includes ACIN/VBUS>7V, PMIC internal temperature exceeds warning level3 (set in REG 8FH [2]) and DCDC output drop more than 15% than the targeted output voltage (set in REG81H).

Power off by power on key pressed

Once power on key pressed, POK signal assert low and need to remain low for 32ms to be considered valid. PMIC has configurable timer to detect power on key hold time. If POK remain low for less than IRQLEVEL (set in REG 36H [5:4]), POKSIRQ will be set. For POK hold time > IRQLEVEL, POKLIRQ will be set. Typically, the system uses POKLIRQ to allow user to express their demands for Host shutdown.

If POK remain low for more than OFFLEVEL (set in REG 36H [1:0]), POKOIRQ will be issued. After IRQ issued, PMIC will wait for a period of time before it force shutdown (set in REG36H[3]). The PMIC can be turned on automatically (set in REG36[2]). The waiting period is programmable from 0s to 70s(set in REG37H[2:0]).

If POK width is more than 16s, then PMIC will force shutdown immediately. This feature can be set in REG 8FH [3]. When PMIC force shutdown, VCC_RTC will be shut off for 2 seconds, with 1K resistor to pull VCC_RTC to ground and then it will turn back on.

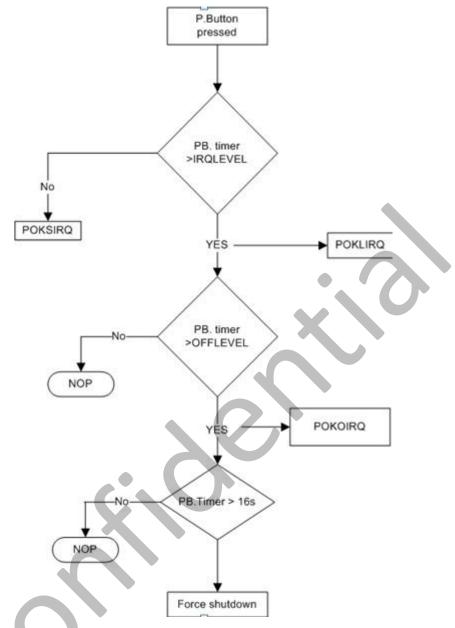


Figure 4. AXP802 Power ON/OFF By Power On Key Pressed

Power off by write 1 to REG32[7]

If Host write 1 to REG32[7] of PMIC, the AXP802 will shut down by itself. It's called soft power off.

9.1.2 Sleep And Wakeup

To switch from power on mode to sleep mode, several power outputs should be disable. After that, REG31[3] can be used to control whether following sources can be used to trigger wakeup.

- 1. ACIN connection/disconnection(REG40[6:5] is set to 1);
- 2. VBUS connection/disconnection(REG40[3:2) is set to 1);

- 3. POK press-long-key(REG44[3] is set to 1);
- 4. POK negative edge(REG44[5] is set to 1);
- 5. Battery low power warning Level 2(REG43[1:0] are set to 1);
- 6. Detection of positive/negative edge when GPIO[1:0] functions is

input (REG4C[1:0], REG90[7:6] and REG92[7:6] are set to 1);

- 7. Software wakeup(REG31[5] is set to 1);
- 8. IRQ wakeup(REG8F[7] is set to 1);
- 9. Charging or Charge Done(REG41[3:2] are set to 1).

After wakeup is triggered, each power output can be restored to default state in right power on sequence. The Figure 5 is the Sleep/Wakeup control process.

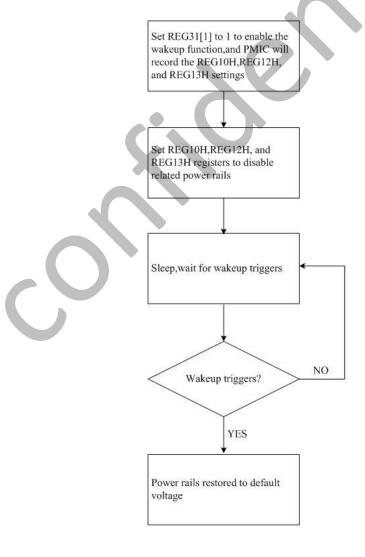


Figure 5. AXP802 Sleep/Wakeup Control Process

9.2 IPS (Intelligent Power Select)

AXP802 has Intelligent Power Select (IPS) to select the appropriate source to power the system. The output of IPS, IPSOUT will then be used as power source for downstream regulators and battery charger. For single input power source system, the power source could be connected to ACIN and VBUS.

9.2.1 IPS Overview

Input Power Sources Block Diagram

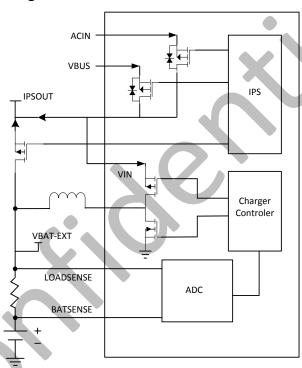


Figure 6. AXP802 Input Power Sources Block Diagram

Single Input Power Source Connection Diagram

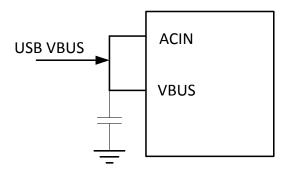


Figure 7. AXP802 Single Input Power Source Connection Diagram

- o If only Li- Battery is available, and no external power input, Li- Battery is used for power input;
- o If external power is available (ACIN or VBUS), it is preferred in power supply;
- o If both ACIN and VBUS are available but not short together, then ACIN is preferred in power supply;
- o If both ACIN and VBUS are available and short together, they will be used at the same time;
- If the current is still insufficient, charge current will be reduced to zero, and Battery is used for one of power sources;
- o If Li- Battery is available, it will "Seamlessly" switch to Li- Battery once external power is removed.

9.2.2 IPSOUT Source Selection

There are two power source, ACIN source is channeled to IPSOUT when REG 3AH[7] is set to 1 (default). For whatever reason, if ACIN source need to be disconnected from IPSOUT, set REG 3AH[7] to 0. VBUS source is channeled to IPSOUT when REG 30H[7] is set to 0 (default). For whatever reason, if VBUS source need to be disconnected from IPSOUT, set REG 30H[7] to 1. Note that when BC Detection module is detecting, REG 2CH[2] = 1, VBUS to IPSOUT channel is OFF. We can shorted ACIN and VBUS together to Reduce power path Resistor, and AXP802 can auto detect it and report it in REG00H[1].

ACIN Select Setting

Table 9-2

REG 3AH	Description	R/W	Default
Bit 7	ACIN path select control when ACIN valid 0: ACIN path Not selected 1: ACIN path selected	RW	1

VBUS Select Setting

Table 9-3

REG 30H[7]	REG 2CH[2]	VBUS_SEL
0	0	1
1	X	0
Х	1	0

Table 9-4

REG 30H	Description	R/W	Default
	VBUS path select control (VBUS_SEL) when VBUS valid		
Bit 7	0: VBUS path selected	RW	0
	1: VBUS path not selected		

Table 9-5

REG 2CH	Description	R/W	Default
	BC_status (BC Detection status)		
Bit 2	1: Detecting, this bit is set when BC Detection start	RW	0
	0: Detection complete		

Input Source Select Setting

Table 9-6

VBUS_SEL	REG 00H[6]	REG 00H[4]	REG 00H[1]	IPSOUT from
×	0	0	×	VBAT-EXT
×	1	×	0	ACIN
0	0	1	×	VBAT-EXT
1	0	1	0	VBUS
1	0	1	1	VBUS
0	1	1	1	VBAT-EXT
×	1	0	1	ACIN
1	1	1	1	ACIN+VBUS

Table 9-7

REG 00H	Description	R/W	Default
Bit 6	Indication ACIN can be used or not	R	0
Bit 4	Indication VBUS can be used or not	R	0

9.2.3 ACIN Current/Voltage Limitation

ACIN input power source has minimum hold voltage (VHOLD) setting and current limit setting. When the input source voltage drops below its VHOLD setting, it is considered as not having sufficient power. IPS will limit the current draw automatically so that the input source voltage is hold to this minimum level.

ACIN VHOLD is set as max of VBAT+0.15V or 3AH[5:3] whereas ACIN current limit can be set through REG 3AH[2:0].

Table 9-8

REG 3AH	Description	R/W	Default
	ACIN VHOLD setting bit2-0		
Bit 5:3	000: 4.0V; 001: 4.1V; 010: 4.2V; 011: 4.3V;	RW	000
	100: 4.4V; 101: 4.5V; 110: 4.6V; 111: 4.7V		
Bit 2:0	ACIN current limited setting bit2-0	RW	000
	000: 1.5A; 001: 2.0A; 010: 2.5A; 011: 3.0A;		000

100: 3.5A; 101: 4.0A; 010&011: Reserved	
Note: when ACIN and VBUS is shorted on PCB, the current limit is set by	
VBUS current limit(REG35[7:4]).	

9.2.4 VBUS Current/Voltage Limitation

VBUS input power source has minimum hold voltage (VHOLD) setting and current limit setting. When the input source voltage drops below its VHOLD setting, it is considered as not having sufficient power. IPS will limit the current draw automatically so that the input source voltage is hold to this minimum level.

VBUS VHOLD is set as max of VBAT+0.15V or 30H[5:3] whereas VBUS current limit can be set through REG 35H[7:4].

Table 9-9

REG 30H	Description	R/W	Default
	VBUS V _{HOLD} setting bit 2-0		
Bit 5:3	000: 4.0V; 001: 4.1V; 010: 4.2V; 011: 4.3V;	RW	000
	100: 4.4V; 101: 4.5V; 110: 4.6V; 111: 4.7V		

Table 9-10

REG 35H	Description	R/W	Default
Bit 7:4	VBUS current limit select when VBUS Current limited mode is enable		
	0000: 100mA; 0001: 500mA; 0010: 900mA; 0011: 1500mA;	RW	000
	0100: 2000mA; 0101: 2500mA; 0110: 3000mA; 0111: 3500mA;		
	1xxx: 4000mA		

VBUS with the BC detection

For the case of battery charger detection enabled, once the USB charger detection is completed, VBUS current limit will be guided by the result of the detection. Subject to the type of USB charger detected, the current limit set in REG 35H[7:4] will be auto updated by the value set in REG 30H[1:0]. For example, if the BC detection result indicates SDP, the current limit in REG35H[7:4] will be set to 500mA (900mA if it is USB 3). If the detected USB charger is CDP or DCP, the current limit in REG 35H[7:4] will then be updated according to the setting in REG 30H[1:0].

Table 9-11

REG 2FH[7:5]	Current limit	Description
SDP	500mA	USB connected. After communication, CPU can identify
Other REG30H[1:0]		USB3.0, then change the current limit to 900mA.

Table 9-12

	REG 30H	Description		Default	
D :: 4.0	Current limit default when BC1.2 detection result is non SDP	DW	01		
	Bit 1:0	00: 900mA; 01: 1500mA; 10: 2000mA 11: 2500mA	RW	01	

9.2.5 ACIN/VBUS Input Overvoltage Protection

ACIN/VBUS to IPSOUT path have a regulator, target of 5.0V:

Table 9-13

Input power	IPSOUT	CHGLED	Contents
>7V	5V	Floating	AXP802 shutdown
>6.3V	5V	2Hz toggle	Work normally
>5.06V	5V	Charge LED	
<5.06	Vin-0.06V	Charge LED	
<3.5V	Vin-0.06V	Charge LED	Invalid

9.3 BC Detection Module

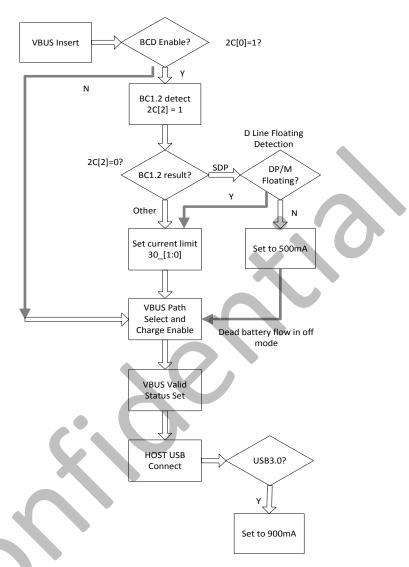


Figure 8. AXP802 Battery Charger Detection Flow

This section is primarily based on battery charging specification, for more information please refer to BC rev1.2 specifications. AXP802 is compatible with BC rev1.2 and can identify SDP/CDP/DCP except ACA The PMIC can detect the device type without software activity.

Table 9-14

Device	Description	Compatible
SDP	Standard Downstream Port	PMIC can identify
CDP	Charging Downstream Port	PMIC can identify
DCP	Dedicated Charging Port	PMIC can identify
ACA	Accessory Charger Adapter	PMIC can't identify

Please refer to REG2FH for detailed information.

AXP802 has battery charger detection module that capable of detecting type of USB charger plug into the port. The Figure 8 is the battery charger detection flow.

9.4 Adaptive PWM Charger

The AXP802 battery charger solution has two charging modes that it can be in. It is specifically designed to charge Li Ion or Li Polymer type batteries. The two modes are 1) Pre Charge Mode and 2) Fast Charge Mode. The delineation between these two modes is based on the battery voltage level of VTRKL which is set at 3.0V.

When battery voltage, VBATSENSE is between OV to 3.0V (VTRKL), the charger is in Pre Charge Mode where charging current is limited to a value of ITRKL (10% of ICHRG, default value is 120mA). This mode of operation is intended to prevent damage to the battery. Once VBATSENSE \geq VTRKL, the charger will enter Fast Charge Mode. The Fast Charge Mode can be subdivided into two phases, namely the constant current phase (CC) and the constant voltage phase (CV). The CC phase takes place when VBATSENSE is in between VTRKL and VTRGT. It will charge with constant ICHRG. When VBATSENSE reach VTRGT, charger will operate at CV phase. At this phase, charger will charge with constant voltage of VTRGT.

9.4.1 Charger Overview

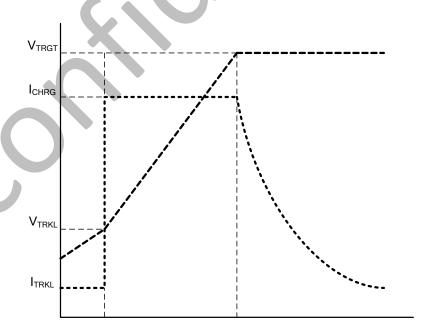


Figure 9. AXP802 Charger Overview

VTRGT is programmed in REG 33H[6:5] and ICHRG is in REG 33H[3:0] whereas VTRKL is fixed at 3V and ITRKL is set as 10% of ICHRG.

9.4.2 Charging Start And Stop

When VBATSENSE is between 0V to (VTRGT-0.1V), the charge operation will start when ACIN/VBUS insert and REG 33H[7] is set to 1. The charging operation will cease when VBATSENSE is > (VTRGT-0.1V) and charging current < 10% of ICHRG.

9.4.3 Timeout Activity

Refer to REG 34H, there are 2 timers that can be programmed as charging expire time, REG 34H[7:6] for Pre Charge and REG 34H[1:0] for Fast Charge Mode. When the actual charge current is less than 20% of the ICHRG, the timer will automatically hold. When the timer expired, charger will no longer charge with programmed charging current. Instead, it will turn into safe mode. Under safe mode, charger will always charge the battery with 5mA until VBATSENSE > VTRGT - 0.1V. When the charger exits from safe mode, it will assert the IRQ. The safe mode status is reflected in REG 01H[3] and SOC can get the mode status through this bit.

Table 9-15

REG 34H	Description		R/W	Default
Bit				
7	Pre-charge Timer length setting 1 00: 40 minutes; 01: 50 minutes;		RW	0
6	Pre-charge Timer length setting 0	10: 60 minutes; 11: 70 minutes.	RW	1
1	Fast charge maximum time setting 1	00: 6 hours; 01: 8 hours;	RW	0
0	Fast charge maximum time setting 0	10: 10 hours; 11: 12 hours.	RW	1

Table 9-16

REG 01H	Description	R/W
Bit3	Indicate battery is in safe mode or not 0: not in; 1: in	R

There are two ways to reset or exit from safe mode. One is remove and re-insert the input power source, another is toggle charger enable bit.

9.4.4 CHGLED Activity

AXP802 provides CHGLED pin. The LED connected to this pin can be used to indicate charger status and input power sources over voltage alarm. There are two Charge LED modes that can be configured through REG 34H[4] if REG 32H[3] is set to 1.

Table 9-17

REG 34H	Description	R/W	Default
---------	-------------	-----	---------

Bit 4	CHGLED Mode select when REG 32H[3] is 1	RW	0
	0: Type A; 1: Type B		

Table 9-18

REG 32H	Description		R/W	Default
Bit 5-4	CHGLED pin control 00: Hi-Z		RW	00
	01: 25% 0.5Hz toggle			
	10: 25% 2Hz toggle			
	11: drive low			
Bit 3	CHGLED pin control	o: controlled by REG 32H[5:4]		0
	1: controlled by Charger			

Charge LED indicator

Table 9-19

CHGLED pin	Mode A	Mode B	
		Not charging due to	
Z (tri-state)	Not charging	1: no external power source; or	
Z (tii-state)	Not charging	2: external power source is insufficient	
		and battery is discharging	
	Abnormality alarm due to		
25% duty 1Hz (Z/Low)	1: charger timeout; or	Charging	
	2: IC temperature > warning level 2		
		Alarm due to	
25% duty 4Hz (Z/Low)	Overvoltage alarm (VBUS > 6.3V)	1: VBUS > 6.3V; or	
25% duty 4HZ (Z/LOW)	Overvoitage diatiff (VBO3 > 0.5 V)	2: charger timeout; or	
		3: IC temperature > warning level 2	
Low	Charries	Not charging due to battery is fully	
Low	Charging	charged	

9.4.5 Battery Detection

When the VBATSENSE<2.2V, AXP802 judge it as battery is not present. When VBATSENSE goes higher than 2.2V, it indicates battery present or is inserted. For the case of battery insertion or removal, IRQ will be asserted. Battery presence status is indicated in REG01H[5] and the battery detection function can be set by REG 32H[6]. When charger insert, AXP802 will send a pulse to detect battery is present or not per 16 seconds.

9.4.6 Temperature Protection

AXP802 has built in thermal protection for the IC itself with 3 levels of warning. Each warning level has 6.8°C different in threshold compare to the next level and each warning level has hysteresis gap of 13.6°C. Below are the charger responses with respect to each thermal warning level.

Table 9-20

Warning	AXP802 Response
	Once the IC temperature exceeds this level, charger will charge at minimum charging current.
Level 1	If REG35[3]=1, the charger will stop charging. When IC temperature drops below hysteresis
	limit, charger will automatically go back to its original charging state.
	If IC temperature continue to rise and exceeds this level, charger will continue to charge at
Level 2	minimum charging current. Charge LED will provide indication according to Table 9-19. If IRQ is
	enabled in REG43H[7], IRQ will be asserted and its status can be read from REG 01H[7].
1 1 2	If IC temperature exceeds this level, all the behavior is the same as level 2 but if REG8FH[2] is
Level 3	set to 1, IC will automatically shut down.

Table 9-21

REG 43H	Description	R/W	Default
Bit7	The PMIC temperature over the warning level 2 IRQ (OTIRQ) enable	RW	0

Table 9-22

REG 01H	Description	R/W	Default
Bit7	Indication PMIC die over temperature or not	R	0
	0: not over temperature; 1: over temperature		

Table 9-23

REG 8FH	Description	R/W	Default
Bit 2	The PMIC shut down or not when Die temperature is over the warning		0
	level 3		
	0: not shut down; 1: shut down		

Beside built in IC thermal protection, AXP802 has the capability to sense one external thermal sensor (for battery temperature) through TS pin.

Block Diagram for Battery Temperature Measurement

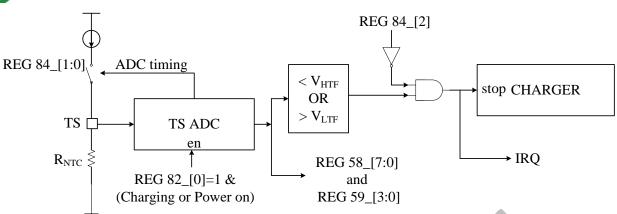


Figure 10. AXP802 Battery Temperature Measurement Block Diagram

AXP802 has built in current source that can be used to inject to external thermal sensor thru TS pin for temperature reading. This current source has 4 level of current which can be programmed through REG 84H[5:4]. By default, the current source will only be injected when ADC is going to read the temperature data. The ADC to read TS pin input is enabled by setting REG 82H[0] to 1. However the current source switch can be programmed to always OFF or ON or only ON when charger is charging through REG 84H[1:0].

REG 84H Description R/W Default Current source from TS pin control Bit 5-4 RW 11 00: 20uA; 01: 40uA; 10: 60uA; 11: 80uA Current source from TS pin on/off enable bit [1:0] 01: on when charging battery, off when not charging; 10: on in ADC phase and off when out of the ADC phase, for power saving; **Bit1-0** RW 10 11: always on Note: TS pin and GPIO0ADC pin are same current source, so if set the TS current source is always on, the GPIO0ADC is invalid

Table 9-24

Table 9-25

REG 82H Bit	Description		R/W	Default
0	TS pin input to ADC enable	0: off, 1: on	RW	0

When the current source is injected to thermal sensor (NTC), it will create a voltage drop across NTC and this voltage will be read by 12 bits ADC thru TS pin. The 12 bits code output of the ADC will then be stored in REG 58H (HSB 8) & REG 59H (LSB 4). The relation of TS pin voltage to 12 bits ADC output code is as below:

12 bits ADC output code = $R_NTC(\Omega)$ * REG 84[5:4](μ A) / (0.8 * 1000).

Table below is the example by using 10K NTC from Murata (NCP15XH103F03R).

Table 9-26

Temperature	R_NTC	TS Pin Voltage	12 bits ADC output code	
(°C)	(Ω)	(V)	REG 58H[7:0]	REG 59H[3:0]
-10	40260	3.221	FBH	АН
0	26490	2.119	A5H	8H
25	10000	0.800	3EH	8H
40	5840	0.467	24H	7H
45	4924	0.394	1EH	СН
55	3550	0.284	16H	3H

There are 2 battery over temperature (OTP) and 2 under temperature (UTP) thresholds can be set to protect the battery by either controlling the charger or shutdown the system. The first level OTP & UTP thresholds are programmed by REG 38H & REG 39H. The second level OTP & UTP threshold are programmed by REG 3CH & REG 3DH. When battery temperature is higher or lower than the first level OTP or UTP threshold, IRQ is asserted, charger will stop charging and REG 01H[6] change to 0 to reflect the status. When battery temperature is higher or lower than the second level OTP or UTP threshold, IRQ is asserted. System may or may not shutdown subject to SW decision. There is a hysteresis of 460.8 mV(refer to TS pin voltage) for UTP threshold, and there is a hysteresis of 57.6 mV for OTP threshold. Every time when the battery temperature comes out from first level over or under temperature, IRQ is asserted. Charger restores the original charging state and REG 01H[6] change to 1. In normal case, first level of OTP & UTP thresholds should be set within the second level OTP & UTP thresholds.

Using TS pin current source and obtain TS pin data of the following table:

Table 9-27

Usage condition	setting	Key point
Don't need temperature protection	TS = GND, REG 84H[1:0] = 00,	TS work as GPADC
	(default 00), REG84H[2] = 1	
Temperature protection when in charger	REG 84H[1:0] = 01	Current source on when
		charging
Temperature protection when in charging and	REG 84H[1:0] = 10	
discharging		
TS for GPADC or GPIO	REG 84H[1:0] = 11 when need	
	current source	
	REG 84H[1:0] = 00 when not need	
	current source	

Logic Table:

Table 9-28

REG84H[2] Function	REG82H[0] ADC Enable	REG84H[1:0] Current	Work mode	IRQ	Note
0	0	xx	TS	NO	
0	1	00	TS	NO	
0	1	01	TS	IRQ when in Charging	all IRQ work
0	1	10/11	TS	IRQ all times	
1	0	хх	GPADC	NO	TS function disable

9.5 Multi-Power Outputs

DCDC1~6 are dual mode (PFM / PWM), by default is auto switch mode. All DCDC and PWM charger are synchronized with frequency of 3MHz (with spread spectrum option), hence small value external inductors and capacitors components can be used.

All DCDC and LDO have current limiting protection function. When the load current exceeds the current limit, the output voltage will drop. Meanwhile, all of the DCDC output voltage will be monitored. If the DCDC output voltage is 15% lower than the set value and DCDC 85% low voltage turn off PMIC function (REG 81H) is enabled, PMIC will automatically force a shutdown and PWROK pin becomes low. DCDC output voltage monitor de-bounce time setting is available at REG 8EH[7:6].

DCDC2~6 has DVM enable option. In DVM mode, when there is a change in the output voltage, DCDC will change to the new targeted value step by step. If the application does not require use of any DCDC, the LX pin can be left floating while VIN and PGND need to be connected. PMIC will automatically detect this state to turn off the DCDC.

Table 9-29

Power Rails	Input	Voltage Range	AXP802 Default Voltage	Max Current	Default State	Application Example
DCDC1	IPSOUT	1.6~3.4V	3.3V	1.5A	on	VCC-IO
DCDC2	IPSOUT	0.5~1.3V	0.9V	3.0A	on	VDD-CPU
DCDC3	IPSOUT	0.5~1.3V	0.9V	3.0A	on	VDD-CPU
DCDC4	IPSOUT	0.5~1.3V	0.9V	3.0A	on	VDD-GPU
DCDC5	IPSOUT	0.8~1.84V	1.2V	2.5A	on	VCC-DRAM
DCDC6	IPSOUT	0.6~1.52V	0.9V	2.5A	on	VDD-SYS

ALDO1		0.7~3.3V	0.9V	0.5A	on	
ALDO2	IPSOUT	0.7~3.3V	1.8V	0.3A	on	
ALDO3		0.7~3.3V	3.3V	0.2A	on	AVCC
DLDO1	IDCOLIT	0.7~3.3V	3.3	0.5A	on	
DLDO2	IPSOUT	0.7~4.2V	2.9	0.2A	off	
DLDO3	Or Others	0.7~3.3V	2.9	0.3A	off	
DLDO4	Others	0.7~3.3V	3.3	0.5A	off	
ELDO1	IPSOUT	0.7~1.9V	1.8	0.4A	on	
ELDO2	Or	0.7~1.9V	0.9	0.2A	off	
ELDO3	Others	0.7~1.9V	1.8	0.2A	off	
FLDO1	IPSOUT	0.7~1.45V	0.9	0.3A	on	
FLDO2	Or Others	0.7~1.45V	/	0.1A	off	VDD-CPUS
GPIO0LDO	IPSOUT	0.7~3.3V	/	0.1A	off	
GPIO1LDO	123001	0.7~3.3V	/	0.15A	off	
VINT		Fixed 1.8V	Fixed 1.8V	100mA	Always on	PMIC Internal
RTCLDO	IPSOUT	Fixed 3.0 or 1.8V	Fixed 1.8V	100mA	Always on	VCC-RTC

Both VINT and RTCLDO input from IPSOUT. As long as any of the ACIN/VBUS or BAT power exists, they will not power down. VINT output is fixed at 1.8V, while VCC_RTC is fixed at 1.8V too for AXP802.

9.6 ADC

PMIC has a 12Bit SAR ADC. The ADC input range is 0V to 2.0475V, with is 0.5mV/step. Voltage and current ADC has sampling frequency option of 800/400/200/100Hz. The relationship between input signal and data is listed below:

Table 9-30

Channel function	000Н	STEP	FFFH	Condition
BAT voltage (BATSENSE)	0mV	1.1mV	4.5045V	Power On
Current offset	0mA	1mA	4.095A	Charging or power on
BAT discharge current	0mA	1mA	4.095A	Power on
Internal temperature	-267.7+0.10625*xxxH (°ℂ)			Charging or Power on
BAT charge current	0mA	1mA	4.095A	Charging or Power on
TS pin input	0mV	0.8mV	3.276V	Charging or Power on
GPIO0 pin input	0mV	0.8mV	3.276V	Power On

Current ADC measured the current through the 10mohm resistor between BATSENSE and LOADSENSE. For internal temperature, internal logic will do the ADC data comparison with register set warning level for sending AXP802 Datasheet V1.0

over-temperature alarm or shutdown. To identify the battery current direction, the charge current and discharge current value will be compare base on status of charger enable, battery present and VBUS present indication.

9.7 Fuel Gauge

The Fuel Gauge comprises 3 modules – Rdc calculation module; OCV (Open Circuit Voltage) and Coulomb counter module; and calibration module. The Fuel Gauge system is able to export information about battery to application such as Battery capacity percentage (REG B9H), Battery Voltage (REG 78H, REG 79H), Battery charging current (REG 7AH, REG 7BH), Battery discharge current (REG 7CH, REG 7DH), Battery maximum capacity (REG E0H, REG E1H), Battery Rdc value (REG BAH, REG BBH). The Fuel Gauge can be enabled or disabled via REG B8H. The Battery low warning can be set in REG E6, and IRQ (REG 4BH) will be sent out to alert the platform when the battery capacity percentage is lower than the warning level set in REG E6H.

Once a default battery is selected for a particular design, it is highly recommended to calibrate the battery to achieve better Fuel Gauge accuracy. The calibration procedure is documented in separate Application Guide – AXP802 Battery Calibration Application Guide. Once the calibration data are available, user can write the calibration info to REG CO^{DFH} (OCV percentage table) on each boot. Or user can choose not to do the calibration and use the default OCV percentage value. Additionally, the Fuel Gauge system is capable to learn the battery characteristic on each Full charge cycle. Information such as Battery Maximum capacity (REG EOH, REG E1H) and Rdc (REG BAH, REG BBH) will be updated automatically over time.

OCV Percentage Table

Table 9-31

Reg Address	Percent	ocv
	0	2.9920
CO	RW(H)	3.1328
C1	RW(H)	3.2736
C2	RW(H)	3.3440
C3	RW(H)	3.4144
C4	RW(H)	3.4848
C5	RW(H)	3.5552
C6	RW(H)	3.5904
C7	RW(H)	3.6080
C8	RW(H)	3.6256
C9	RW(H)	3.6432
CA	RW(H)	3.6608
СВ	RW(H)	3.6960
CC	RW(H)	3.7312
CD	RW(H)	3.7664
CE	RW(H)	3.8016
CF	RW(H)	3.8192
D0	RW(H)	3.8368
D1	RW(H)	3.8544

D2	RW(H)	3.8720			
D3	RW(H)	3.9072			
D4	RW(H)	3.9424			
D5	RW(H)	3.9776			
D6	RW(H)	4.0128			
D7	RW(H)	4.0480			
D8	RW(H)	4.0832			
D9	RW(H)	4.1184			
DA	RW(H)	4.1360			
DB	RW(H)	4.1536			
DC	RW(H)	4.1888			
DD	RW(H)	4.224			
DE	RW(H)	4.2592			
DF	RW(H)	4.2944			
	100	4.3296			

9.8 Interrupt Controller

PMIC Interrupt Controller monitors such as low power, bad battery, PWRON pin signal, over temperature, GPIO input edge signals such as trigger events. When the events occur, corresponding IRQ status will be set to 1, and will drive IRQ pin (NMOS open drain) asserted low. When host detect triggered IRQ signal, host will scan through the trigger events and respond accordingly. Meanwhile, Host will reset the IRQ status by writing '1' to status bit. Host will always check every IRQ status from time to time and only will take effect with respective relevant enabled IRQ bit only.

The input edge IRQ of GPIO will only functions when GPIO pin is set as Digital input, and the function will take effect when input edge IRQ is enable. The input will go through about 1ms of de-bounce and corresponding IRQ will trigger when detect rising and falling edge. Rising, falling, or both edge triggering is control by corresponding IRQ register bit.

7bits event timer will issue timeout IRQ. Clearing IRQ does not start counter.

9.9 TWSI

The PMIC is compatible with a host-controlled environment, functioned as a slave port enabling serial interface compatible hosts to write to or read from internal registers. The PMIC only responds (ACK) to address 68H/69H.(The slave address can be ordered to 6A/6BH)

Table 9-32

BYTE		BIT						
	MSB	6	5	4	3	2	1	0
WRITE	0	1	1	0	1	0	0	0

READ	0	1	1	0	1	0	0	1
I/O DATA BUS	В7	В6	B5	B4	В3	B2	B1	В0

Incremental Read

The PMIC supports incremental read operations in normal TWI mode. The address increases by 1 automatically.

RSB

The PMIC supports RSB interface for Allwinner platform. The slave address is 0x01D1 or 0x0273.

10 Register List

Table 10-1

Address	Description	R/W	Default
00	Power source status	R	
01	Power mode and Charger status	R	
02	Power up/down reason register	RW	
03	IC type number	R	8'b01xx0001
04-0F	12 Data buffers	RW	00H
10	Output power on-off control 1	RW	3FH
12	Output power on-off control 2	RW	00H
13	Output power on-off control 3	RW	88H
14	On/Off synchronous control	RW	08H
15	DLDO1 voltage control	RW	1AH
16	DLDO2 voltage control	RW	16H
17	DLDO3 voltage control	RW	16H
18	DLDO4 voltage control	RW	1AH
19	ELDO1 voltage control	RW	16H
1A	ELDO2 voltage control	RW	4H
1B	ELDO3 voltage control	RW	16H
1C	FLDO1 voltage control	RW	4H
1D	FLDO2 voltage control	RW	11H
20	DCDC1 voltage control	RW	11H
21	DCDC2 voltage control	RW	28H
22	DCDC3 voltage control	RW	28H
23	DCDC4 voltage control	RW	28H
24	DCDC5 voltage control	RW	взн
25	DCDC6 voltage control	RW	1EH
27	DCDC2~6 DVM control	RW	FCH
28	ALDO1 voltage control	RW	2H

727000		l	
29	ALDO2 voltage control	RW	ВН
2A	ALDO3 voltage control	RW	1AH
2C	BC Module Global Register	RW	00H
2D	BC Module VBUS Control and Status Register	RW	30H
Address	Description	R/W	Default
2E	BC USB Status Register	RW	40H
2F	BC Detect Status Register	R	20H
30	VBUS path control & Hold voltage setting	RW	01H
31	Power wakeup control & V _{OFF} setting	RW	03H
32	Power Disable, BAT detect and CHGLED pin control	RW	43H
33	Charger Control 1	RW	C5H
34	Charger Control 2	RW	45H
35	Charger Control 3	RW	18H
36	POK setting	RW	59H
37	POK Power off activity time setting	RW	00H
38	V _{LTF-charge} setting	RW	A5H
39	V _{HTF-charge} setting	RW	1FH
3A	ACIN path control	RW	80H
3B	DCDC frequency setting	RW	08H
3C	V _{LTF-work} setting	RW	FCH
3D	V _{HTF-work} setting	RW	16H
3E	Interface mode select	RW	00H
40	IRQ enable 1	RW	D8H
41	IRQ enable 2	RW	FCH
42	IRQ enable 3	RW	FFH
43	IRQ enable 4	RW	03H
44	IRQ enable 5	RW	7CH
45	IRQ enable 6	RW	00H
48	IRQ Status 1	RW	00H
49	IRQ Status 2	RW	00H
4A	IRQ Status 3	RW	00H
4B	IRQ Status 4	RW	00H
4C	IRQ Status 5	RW	00H
4D	IRQ Status 6	RW	00H
58	TS pin input ADC data, highest 8bit	R	00H
59	TS pin input ADC data, lowest 8bit	R	00H
5A	GPIO0 pin input ADC data, highest 8bit	R	00H
5B	GPIO0 pin input ADC data, lowest 8bit	R	00H

78	Average data bit[11:4] for Battery voltage (BATSENSE)	R	00H
79	Average data bit[3:0] for Battery voltage (BATSENSE)	R	00H
7A	Average data bit[11:4] for Battery charge current	R	00H
7B	Average data bit[3:0] for Battery charge current	R	00H
Address	Description	R/W	Default
7C	Average data for Battery discharge current highest 8 bit	R	00H
7D	Average data for Battery discharge current lowest 4 bit	R	00H
80	DCDC PWM/PFM mode select	RW	80H
81	Off-Discharge and Output monitor control	RW	80H
82	ADC Enable	RW	E1H
84	ADC speed setting, TS pin Control	RW	F2H
85	ADC speed setting	RW	вон
8A	Timer control	RW	00H
8E	DCDC output voltage monitor de-bounce time setting	RW	40H
8F	IRQ pin, hot-over shut down	RW	00H
90	GPIO0(GPADC) control	RW	07H
91	GPIOOLDO and GPIOO high level voltage setting	RW	1AH
92	GPIO1 control	RW	07H
93	GPIO1LDO and GPIO1 high level voltage setting	RW	1AH
94	GPIO signal bit	R	00H
97	GPIO pull down control	RW	00H
Α0	Real time data bit[11:4] for Battery voltage (BATSENSE)	R	00H
A1	Real time data bit[3:0] for Battery voltage (BATSENSE)	R	00H
В8	Fuel Gauge Control	RW	СОН
В9	Battery capacity percentage for indication	R	64H
ВА	RDC 1	RW	80H
ВВ	RDC 0	RW	5DH
ВС	OCV 1	R	00H
BD	OCV 0	R	00H
EO	Battery maximum capacity	RW	00H
E1	Battery maximum capacity	RW	00H
E2	Coulomb meter counter	RW	00H
E3	Coulomb meter counter	RW	00H
E4	OCV Percentage of battery capacity	R	64H
E5	Coulomb meter percentage of battery capacity	R	64H
E6	Battery capacity percentage warning level	RW	A0H
E8	Fuel gauge tuning control 0	RW	00H
E9	Fuel gauge tuning control 1	RW	00H

EA	Fuel gauge tuning control 2	RW	00H
EB	Fuel gauge tuning control 3	RW	00H
EC	Fuel gauge tuning control 4	RW	00H
ED	Fuel gauge tuning control 5	RW	00H

Note: hereinafter, "system reset" means that the Register will be reset when the PMIC power off, and "power on reset" means that the Register will be reset when IPSOUT voltage drop below 2.1V.

11 Register Description

11.1 REG 00H: Power Source Status

Bit	Description	R/W
7	ACIN presence indication	R
	0: ACIN not presence (ACIN<3.5V)	
	1: ACIN presence (ACIN>4.1V)	
6	Indication ACIN can be used or not	R
5	VBUS presence indication	R
	0: VBUS not presence (VBUS<3.5V)	
	1: VBUS presence (VBUS>4.1V)	
4	Indication of VBUS valid (VBUS_Val) and VBUS can be selected	R
3	VBAT>3.5V or not	R
	0: not; 1: yes	
2	Indication Battery current direction	R
	0: Battery discharge; 1: battery Charging	
1	Indication ACIN and VBUS are shorted or not on PCB, IN_SHORT status	R
	0: not; 1: yes	
0	STARTUP_TRIGGER: indicate the startup trigger is ACIN/VBUS or not	R
	0: not; 1: yes	

11.2 REG 01H: Power Mode And Charger Status

Bit	Description	R/W
7	Indication PMIC die over temperature or not	
	0: not over temperature; 1: over temperature	
6	Charging indication	
	0: Charger is not charging or charging is done; 1: Charger is charging	
5	Battery presence indication	R

	0: No Battery is connected to AXP802; 1: Battery is connected	
4	REG 01H[5] valid flag	R
	0: REG 01H[5] is invalid 1: REG 01H[5] is valid	
	Indicate whether Battery detected or not yet	
3	Indicate battery is in safe mode or not	R
	0: not in; 1: in	
2-0	Reserved	R

11.3 REG 02H: Power Up/Down Reason Register

Reset: Power on reset

Bit	Description	R/W	Default
7	Power on key override was the shutdown reason, write 1 to clear	R/W	0
6	Reserved	R/W	0
5	PMIC UVLO threshold was the shutdown reason, write 1 to clear	R/W	0
4	Reserved	R/W	0
3	Reserved	R/W	0
2	Battery insertion was the start up reason, write 1 to clear	R/W	0
1	Charger insertion was the start up reason, write 1 to clear	R/W	0
0	Power on key was the start up reason, write 1 to clear	R/W	0

11.4 REG 03H: IC Type No.

Default: 8'b01xx0001 (Note: bit4&5 is uncertain)

Bit	Description	R/W
5-4	Reserved	R
7-6	IC type No.	R
&	010001: IC is AXP802	
3-0	Others: Reserved	

11.5 REG 04-0FH: 12 Data Buffers

Default: 00H

Reset: Power on reset

Note: As long as one of the external powers, batteries or backup batteries exists, this data will be reserved and

free from the startup and shutdown influence.

11.6 REG 10H: Output Power On-Off Control 1

Default: 3FH (Note: bit0~5 by default is customized)

Reset: system reset

Bit	Description		R/W	Default
7-6	Reserved			
5	DCDC6 on-off control	0: off; 1: on	RW	1
4	DCDC5 on-off control	0: off; 1: on	RW	1
3	DCDC4 on-off control	0: off; 1: on	RW	1
1	DCDC3 on-off control	0: off; 1: on	RW	1
1	DCDC2 on-off control	0: off; 1: on	RW	1
0	DCDC1 on-off control	0: off; 1: on	RW	1

11.7 REG 12H: Output Power On-Off Control 2

Default: 00H (Note: bit0/3~6 by default is customized)

Reset: system reset

Bit	Description		R/W	Default
7	DC1SW on-off control	0-off; 1-on	RW	0
6	DLDO4 on-off control	0-off; 1-on	RW	0
5	DLDO3 on-off control	0-off; 1-on	RW	0
4	DLDO2 on-off control	0-off; 1-on	RW	0
3	DLDO1 on-off control	0-off; 1-on	RW	1
2	ELDO3 on-off control	0-off; 1-on	RW	0
1	ELDO2 on-off control	0-off; 1-on	RW	0
0	ELDO1 on-off control	0-off; 1-on	RW	1

11.8 REG 13H: Output Power On-Off Control 3

Default: 88H (Note: bit2~3/5~7 by default is customized)

Bit	Description		R/W	Default
7	ALDO3 on-off control	0: off; 1: on	RW	1
6	ALDO2 on-off control	0: off; 1: on	RW	1
5	ALDO1 on-off control	0: off; 1: on	RW	1
4	Reserved			
3	FLDO2 on-off control	0: off; 1: on	RW	0

2	FLDO1 on-off control	0: off; 1: on	RW	1
1-0	Reserved			

11.9 REG 14H: On/Off Synchronous Control

Default: 08H (Note: bit5&6 by default is customized)

Reset: system reset

Bit	Description	R/W	Default
7	Reserved	RW	0
6	DCDC2&3 poly-phase control	RW	1
	0: DCDC2&3 is independent, not poly-phase DCDC		
	1: DCDC2&3 is Dual-phase DCDC		
5	DCDC5&6 poly-phase control	RW	1
	0: DCDC5&6 is independent, not poly-phase DCDC		
	1: DCDC5&6 is Dual-phase DCDC		
4-2	Reserved	RW	010
1	Power control register select	RW	0
	1-select buffer register, output value of control register to buffer		
	0-select the control register		
0	Outport buffer register value	RW	0
	1-outport to control register from buffer		
	Bit[1:0], self clear to 0 after outport		

11.10 REG 15H: DLDO1 Voltage Control

Default: 1AH (Note: bit0~4 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.3V	RW	1AH
	0.7V-3.3V, 100mV/step		

11.11 REG 16H: DLDO2 Voltage Control

Default: 16H

Bit	Description	R/W	Default
-----	-------------	-----	---------

7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 2.9V	RW	16H
	0.7V-3.4V, 100mV/step		
	3.4V-4.2V, 200mV/step		

11.12 REG 17H: DLDO3 Voltage Control

Default: 16H

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 2.9V	RW	16H
	0.7V-3.3V, 100mV/step		

11.13 REG 18H: DLDO4 Voltage Control

Default: 1AH

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.3V	RW	1AH
	0.7V-3.3V, 100mV/step		

11.14 REG 19H: ELDO1 Voltage Control

Default: 16H (Note: bit0~4 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 1.8 V	RW	16H
	0.7-1.9V, 50mV/step		

11.15 REG 1AH: ELDO2 Voltage Control

Default: 4H

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 0.9 V	RW	4H
	0.7-1.9V, 50mV/step		

11.16 REG 1BH: ELDO3 Voltage Control

Default: 16H

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 1.8V	RW	16H
	0.7-1.9V, 50mV/step		

11.17 REG 1CH: FLDO1 Voltage Control

Default: 4H (Note: bit0~3 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	RW	000
3-0	voltage setting Bit 3-0, default is 0.9V	RW	4H
	0.7-1.45V, 50mV/step		

11.18 REG 1DH: FLDO2 Voltage Control

Default: 11H (Note: bit0~3 by default is customized)

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	RW	0000
3-0	FLDO2 voltage setting Bit 3-0, default is 1.25V	RW	1011
	0.7-1.45V, 50mV/step		

11.19 REG 20H: DCDC1 Voltage Control

Default: 11H (Note: bit0~4 default is customized)

Bit Description R/W Defa	Bit	Description	R/W	Default
--------------------------	-----	-------------	-----	---------

7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, 1.6-3.4V, 100mV/step, default is 3.3V	RW	11H

11.20 REG 21H: DCDC2 Voltage Control

Default: 28H (Note: bit0~6 default is customized)

Reset: System reset

Bit	Description		R/W	Default
7	DVM finished or not status bit		R	1
	0: not finished 1: finished			
6-0	voltage setting Bit 6-0, default is 0.9V		RW	28H
	0.50-1.20V: 10mV/step	~ \ \		
	1.22-1.30V: 20mV/step			

11.21 REG 22H: DCDC3 Voltage Control

Default: 28H (Note: bit0~6 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 0.9V	RW	28H
	0.50-1.20V: 10mV/step		
	1.22-1.30V: 20mV/step		

11.22 REG 23H: DCDC4 Voltage Control

Default: 28H (Note: bit0~6 default is customized)

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 0.9V	RW	28H
	0.50-1.20V: 10mV/step		
	1.22-1.30V: 20mV/step		

11.23 REG 24H: DCDC5 Voltage Control

Default: B3H (DC5SET is tied to GND and in type 0. Note: type 0 or 1 is customized)

Reset: System reset

Bit	Description	R/W	D	efault		
7	DVM finished or not status bit	R		1		
	0: not finished 1: finished					
6-0	voltage setting Bit 6-0	RW	DC5SET is tied to :	GND	VINT	Floating
	0.80-1.12V: 10mV/step		Type 0	1.5V	1.36V	1.24V
	1.14-1.84V: 20mV/step		Type 1	0.9V	1.8V	1.0V

11.24 REG 25H: DCDC6 Voltage Control

Default: 1EH (Note: bit0~6 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 0.9V	RW	1EH
	0.60-1.10V: 10mV/step		
	1.12-1.52V: 20mV/step		

11.25 REG 27H: DCDC2~6 DVM Control

Default: FCH

Bit	Description	R/W	Default
7	Reserved	RW	1
6	DCDC6 DVM on-off control	RW	1
	0: disable; 1: enable		
5	DCDC5 DVM on-off control	RW	1
	0: disable; 1: enable		
4	DCDC4 DVM on-off control	RW	1
	0: disable; 1: enable		
3	DCDC3 DVM on-off control	RW	1
	0: disable; 1: enable		
2	DCDC2 DVM on-off control	RW	1

	0: disable; 1: enable		
1-0	Reserved	RW	00

11.26 REG 28H: ALDO1 Voltage Control

Default: 2H (Note: bit0~4 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 0.9V	RW	2H
	0.7-3.3V, 100mV/step		

11.27 REG 29H: ALDO2 Voltage Control

Default: BH (Note: bit0~4 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 1.8V	RW	ВН
	0.7-3.3V, 100mV/step		

11.28 REG 2AH: ALDO3 Voltage Control

Default: 1AH (Note: bit0~4 default is customized)

Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.3V	RW	1AH
	0.7-3.3V, 100mV/step		

11.29 REG 2CH: BC Module Global Register

Default: 00H

Reset: bit7 is system reset, bit[6:0] Power On reset

Bit	Description	R/W	Default
7	DCD_SEL(DCD Detect Select)	RW	0

	Software writes 1 to this bit to select DCD Detection during BC Detect.		
	DCD_TIMEOUT_CTL(DCD Timeout Control)		
	Software writes these fields to configure the DCD timeout value.		
	When the DCD_SEL is set, the BC Module read the MultValldBc if pin contact has been		
	detected or the time defined on these fields has been expired .		
	When the DCD_SEL is not set, he BC Module read the MultValIdBc if the time defined		
	on these fields has been expired .		
	00: 300ms 01: 100ms		
6-5	10: 500ms 11: 900ms	RW	0
	Vlgc_Com_Sel(Vlgc Compare Select)		
	Software writes 1 to this bit to choose the Vlgc compare during Primary Detect when		
	the ID pin is float.		
	When this bit is set, the BC Module is optionally allowed to compare D- with Vlgc		
	beside the Vdp_src comparing. The BC Module determine that it is attached to a DCP		
	or CDP if D- is greater than Vdat_ref, but less than Vlgc. Otherwise, the BC Module		
	determine that it is attached to a SDP, which may actually be a SDP, or a PS2 port, or a		
4	proprietary charge.	RW	0
	DBP_Timeout_CTL(DBP Hardware Timeout Control)		
	If this bit is set, the BC Module would clear the DB_Perform bit on the BC_USB_Sta_R		
	register after Tsvld_con_wkb when the DB_Perform bit is set.		
3	Note: Tsvld_con_wkb = 45min	RW	0
	BC_status(BC Detection status)		
	Detection finish or not		
	1:Detecting, when starting BC Detect, set this bit		
2	0:Detect finish	RW	0
1	Reserved	RW	0
	RS(Run/Stop)		
	Software writes 1 to this bit to start the BC Module operation. A transition from a zero		
	to a one would cause the reset on the BC Module logic.		
0	If this bit = 1,when VBUS low go high, BC detection start automatically	RW	0

11.30 REG 2DH: BC Module VBUS Control And Status Register

Default: 30H

Bit	Description	R/W	Default
7	Reserved	R	0
6	Indicate the first power on status	RW	0

	Software write 1 to this bit to indicate not first time power on		
	If Battery not present, and this bit is 0,the VBUS current limit set to 3A,for the F/W		
	update in factory		
	DP/DM floating Detection enable		
	0:disable		
5	1:enable	RW	1
	DP/DM pull down enable		
	0:disable		
4	1:enable	RW	1
3-0	Reserved	RW	0

11.31 REG 2EH: BC USB Status Register

Default: 40H

Reset: bit6 is power on reset, Reset by the VBUS negative edge

Bit	Description	R/W	Default
	DB_Perform		
	Dead Battery Perform		
	Both BC Module and software write 1 to this bit to perform unconfig DBP clause and		
7	clean it to 0 to stop the unconfig DBP clause.	RW	0
	Dead battery detect enable bit (Reset: power on reset)		
	0:disable		
6	1:enable	RW	1
5	Reserved		
	USB_Mode		
	USB Speed Mode Flag		
	This bit is used in good battery state. It is set by the USB driver to indicate the USB		
	speed mode for the power manage.		
	0: High-Speed, Full-Speed or Low-Speed Mode		
4	1: Super-Speed Mode	RW	0
	Dev_Bus_State		
	Device Bus State Flag		
	These fields are used in good battery state. They are set by the USB driver to indicate		
	the USB bus state for the power manage.		
	000b: attached, physical signal pin contact		
	001b: connected, attached and when the downstream terminal is valid		
	010b: suspended		
	011b: configured		_

3-0	100b-111b: reserved	RW	0	
-----	---------------------	----	---	--

11.32 REG 2FH: BC Detect Status Register

Default: 20H

Reset: Reset by the VBUS negedge

Bit			Description	R/W	Default
	BC_Result	BC_Result			
	BC Detect	BC Detect Result			
	These field	ds indicate the i	result of BC Detect performance. These fields should be		
	used by	the BC Module	when the BC_Per bit of the BC_GLOBAL_R register		
	transactio	n from 1 to 0.			
	Value	Meaning	Descriptor		
	000b	Reserved	/		
	001b	SDP	The insert port is Standard Downstream Port		
	010b	CDP	The insert port is Charging Downstream Port		
	011b	DCP	The insert port is Dedicated Charging Port		
7-5	1xxb	Reserved	1	R	001
4-0	Reserved			R	00000

11.33 REG 30H: VBUS Path Control & Hold Voltage Setting

Default: 01H

Reset: Bit [7] & bit [2] reset signal is System reset, and Bit [6:3] & bit [1:0] reset signal is Power on reset

Bit	Description	R/W	Default
	VBUS path select control (VBUS_SEL) when VBUS valid		
7	0: VBUS path selected	RW	0
	1: VBUS path Not selected		
6	Reserved		
	VBUS V _{HOLD} setting bit 2-0		
5-3	000: 4.0V; 001: 4.1V; 010: 4.2V; 011: 4.3V;	RW	000
	100: 4.4V; 101: 4.5V; 110: 4.6V; 111: 4.7V		
2	DRIVEVBUS pin output status control	RW	0
	0: output low level; 1: output high level(IPSOUT)	KVV	U
1-0	Current limit default when BC1.2 detection result is non SDP	RW	01
1-0	00: 900mA; 01: 1500mA; 10: 2000mA 11: 2500mA	KVV	01

11.34 REG 31H: Power Wakeup Control & VOFF Setting

Default: 03H

Reset: Bit 3 reset signal is system reset, Bit [7-4] and Bit [2-0] reset signal is Power on reset

Bit	Description	R/W	Default
7	PWROK drive low or not when Power wake up and REG 31_[3]=1	RW	0
	0: not drive low 1: drive low in wake up period		
6	Soft power restart, Write 1 to this bit, the output power will be restart, and then this	RW	0
	bit will clear itself		
5	Soft Power wakeup, Write 1 to this bit, the output power will be waked up, then this	RW	0
	bit will clear itself		
4	Control bit for IRQ output and wakeup trigger when REG 31_[3] is 1	RW	0
	0: IRQ pin is masked and IRQ can wakeup AW1660 when REG 31_[3] is 1		
	1: IRQ pin is normal and IRQ can't wakeup AW1660 when REG 31_[3] is 1		
3	Enable bit for the function that output power be waked up by IRQ source, or IRQ pin,	RW	0
	or REG 31_[5], etc. write 1 to this bit will clear itself		
	0: function is disable		
	1: function is enable		
2-0	V _{OFF} setting bit 2-0	RW	011
	000: 2.6V; 001: 2.7V; 010: 2.8V; 011: 2.9V;		
	100: 3.0V; 101: 3.1V; 110: 3.2V; 111: 3.3V		

11.35 REG 32H: Power Disable, BAT Detect And CHGLED Pin Control

Default: 43H (Note: bit3 default is customized)

Reset: Bit 7 reset signal is system reset, and Bit [6:0] reset signal is Power on reset

Bit	Description	R/W	Default
7	Power disable control	RW	0
	Write 1 to this bit will disable DCDCs&LDOs, and will clear this bit by itself. But		
	RTCLDO and Charger are not controlled by this bit.		
6	Battery detection function control	RW	1
	0: disable; 1: enable		
5-4	CHGLED pin control	RW	00
	00: Hi-Z; 01: 25% 0.5Hz toggle;		
	10: 25% 2Hz toggle; 11: drive low		
3	CHGLED pin control	RW	0
	0: controlled by REG 32H[5:4]		

	1: controlled by Charger		
2	Output power down sequence control	RW	0
	0: output power down at the same time;		
	1: output power down sequence is the reverse of the start sequence		
1-0	control bit for Delay time between PWROK signal and power good time	RW	11
	00: 8ms; 01: 16ms; 10: 32ms; 11: 64ms		

11.36 REG 33H: Charger Control 1

Default: C5H (Note: bit3-0 default is customized)

Reset: Bit [7] reset is system reset, Bit [6:0] reset is power on reset

Bit	Description	R/W	Default
7	Charger enable control	RW	1
	0-disable; 1-enable		
6-5	Charger target voltage setting	RW	10
	00: 4.10V; 01: 4.15V; 10: 4.2V; 11: 4.35V		
4	Charger end condition setting:	RW	0
	0-when I _{CHARGE} <10% I _{CHG} , Charge is done;		
	1-when I _{CHARGE} <20% I _{CHG} , Charge is done;		
3-0	Charge Current setting	RW	0101
	200mA-2.8A, 200mA/step, 14steps, 1110-1111 reserved. default is 1200mA		

11.37 REG 34H: Charger Control 2

Default: 45H

Bit	Description		R/W	Default
7	Pre-charge Timer length setting 1	00: 40 minutes; 01: 50 minutes;	RW	0
6	Pre-charge Timer length setting 0	10: 60 minutes; 11: 70 minutes.	RW	1
5	Charger output turn off or not when charg	ging is end & the PMIC is on state	RW	0
	0: turn off; 1: do not turn off			
4	CHGLED Type select when REG 32_[3] is 1		RW	0
	0: Type A; 1: Type B			
3	PMOS turn off or not when on time of the PMOS is larger than 32us		RW	0
	0: don't turn off; 1: turn off			
2	Charger target voltage depending on charge current or not when target voltage is		RW	1
	4.2V			

	0: disable; 1: enable			
1	Fast charge maximum time setting 1 00: 6 hours; 01: 8 hours;		RW	0
0	Fast charge maximum time setting 0	10: 10 hours; 11: 12 hours.	RW	1

11.38 REG 35H: Charger Control 3

Default: 18H

Reset: [7:4] is VBUS negedge reset , others Power on reset

Bit	Description	R/W	Default
7-4	VBUS current limit select when VBUS Current limited mode is enable		0001
	0000-100mA; 0001-500mA; 0010-900mA; 0011-1500mA;		
	0100-2000mA; 0101-2500mA; 0110-3000mA; 0111-3500mA;		
	1xxx-4000mA		
3	Charger temperature loop enable	RW	1
	0: disable 1:enable		
2-0	Reserved		

11.39 REG 36H: POK Setting

Default: 59H

Reset: Bit 3 is reset by system reset, the others is reset by Power on reset

Bit	Description		R/W	Default
7	ONLEVEL setting 1	00: 128ms; 01: 1s;	RW	0
6	ONLEVEL setting 0	10: 2s; 11: 3s	RW	1
5	IRQLEVEL setting 1	00: 1s; 01: 1.5s;	RW	0
4	IRQLEVEL setting 0	10: 2s; 11: 2.5s	RW	1
3	Enable bit of the function which will shut down t	he PMIC when POK is larger than	RW	1
	OFFLEVEL 0: disable; 1: enable			
2	The PMIC auto turn on or not when it shut down a	fter off level POK	RW	0
	0: not turn on; 1: auto turn on			
1	OFFLEVEL setting 1	00: 4s; 01: 6s;	RW	0
0	OFFLEVEL setting 0	10: 8s; 11: 10s.	RW	1

11.40 REG 37H: POK Power off Activity Time Setting

Default: 00H

Bit	Description	R/W	Default
7-3	Reserved		
2-0	Power off activity time setting	R/W	000
	0/10/20/30/40/50/60/70 S		

11.41 REG 38H: V_{LTF-charge} Setting

Default: A5H

Reset: Power on reset

Bit		Description	R/W	Default
7-0	V _{LTF-charge} setting, M	M*10H, M=A5H: 2.112V; range is 0V-3.264V	RW	A5H

11.42 REG 39H: V_{HTF-charge} Setting

Default: 1FH

Reset: Power on reset

Bit		Description	R/W	Default
7-0	V _{LHF-charge} setting, N	N*10H, N=1FH: 0.397V; range is 0V-3.264V	RW	1FH

11.43 REG 3AH: ACIN Path Control

Default: 80H

Reset: Power on reset, but bit7 is system reset

Bit	Description	R/W	Default
7	ACIN path selection signal	RW	1
	0: ACIN-IPSOUT path not be selected;		
	1: ACIN-IPSOUT path be selected		
6	Reserved	RW	0
5-3	ACIN VHOLD setting bit2-0	RW	000
	000: 4.0V; 001: 4.1V; 010: 4.2V; 011: 4.3V;		
	100: 4.4V; 101: 4.5V; 110: 4.6V; 111: 4.7V		
2-0	ACIN current limited setting bit2-0	RW	000
	000: 1.5A; 001: 2.0A; 010: 2.5A; 011: 3.0A;		
	100: 3.5A; 101: 4.0A; 010&011: Reserved		
	Note: when ACIN and VBUS is shorted on PCB, the current limit is set by VBUS		
	current limit(REG35[7:4]).		

11.44 REG 3BH: DCDC Frequency Setting

Default: 08H

Reset: Power on reset

Bit	Description	R/W	Default
7	DCDC and PWM charger frequency spread enable	RW	0
	0: disable; 1: enable		
6	DCDC and PWM charger frequency spread range control	RW	0
	0: 50KHz; 1: 100KHz		
5	Reserved	RW	0
4	DCDC2/3/4 mode select	RW	0
	0: Always PWM; 1: PSM/PWM Auto switch		
3-0	DCDC frequency setting bit 3-0	RW	1000
	f _{OSC} =3 /(1+ (8-N) *0.04) MHz		
	When N=08, f _{OSC} is 3MHz, error is ±5%		

11.45 REG 3CH: V_{LTF-work} Setting

Default: FCH

Reset: Power on reset

Bit		Description	R/W	Default
7-0	V _{LTF-work} setting, M	M*10H,M=FCH: 3.226V; range is 0V-3.264V	RW	FCH

11.46 REG 3DH: V_{HTF-work} Setting

Default: 16H

Reset: Power on reset

Bit		Description	R/W	Default
7-0	V _{HTF-work} setting, N	N*10H, N=16H: 0.282V; range is 0V-3.264V	RW	16H

11.47 REG 3EH: Interface Mode Select

Default: 00H

Bit	Description	R/W	Default
7-0	Interface mode select	RW	00H

0111 1100 (7CH): select RSB;	
Others: select normal TWI	

11.48 REG 40H: IRQ Enable 1

Default: D8H

Reset: Power on reset

Bit	Description	R/W	Default
7	ACIN over voltage IRQ enable	RW	1
6	ACIN from low go high IRQ enable	RW	1
5	ACIN from high go low IRQ enable	RW	0
4	VBUS over voltage IRQ enable	RW	1
3	VBUS from low go high IRQ enable	RW	1
2	VBUS from high go low IRQ enable	RW	0
1-0	Reserved		

11.49 REG 41H: IRQ Enable 2

Default: FCH

Reset: Power on reset

Bit	Description	R/W	Default
7	Battery append IRQ enable	RW	1
6	Battery absent IRQ enable	RW	1
5	Battery maybe bad IRQ enable	RW	1
4	Quit battery safe mode IRQ enable	RW	1
3	Charger is charging IRQ enable	RW	1
2	Battery charge done IRQ enable	RW	1
1-0	Reserved		

11.50 REG 42H: IRQ Enable 3

Default: FFH

Bit	Description	R/W	Default
7	Battery over temperature in charge mode IRQ (CBTOIRQ) enable	RW	1
6	Quit Battery over temperature in charge mode IRQ (QCBTOIRQ) enable	RW	1
5	Battery under temperature in charge mode IRQ (CBTUIRQ) enable	RW	1

4	Quit Battery under temperature in charge mode IRQ (QCBTUIRQ) enable	RW	1
3	Battery over temperature in work mode IRQ (WBTOIRQ) enable	RW	1
2	Quit Battery over temperature in work mode IRQ (QWBTOIRQ) enable	RW	1
1	Battery under temperature in work mode IRQ (WBTUIRQ) enable	RW	1
0	Quit Battery under temperature in work mode IRQ (QWBTUIRQ) enable	RW	1

11.51 REG 43H: IRQ Enable 4

Default: 03H

Reset: Power on reset

Bit	Description	R/W	Default
7	The PMIC temperature over the warning level 2 IRQ (OTIRQ) enable	RW	0
6-3	Reserved		
2	GPADC(GPIO0) ADC convert finished IRQ enable	RW	0
1	Enable bit for IRQ which indicate battery capacity ratio being lower than warning level	RW	1
	1, (WL1IRQ); normally, for low power warning requisition		
0	Enable bit for IRQ which indicate battery capacity ratio being lower than warning level	RW	1
	2, (WL2IRQ); normally, for power off requisition		

11.52 REG 44H: IRQ Enable 5

Default: 7CH

Reset: System reset

Bit	Description	R/W	Default
7	Event timer timeout IRQ enable	RW	0
6	POK positive edge IRQ (POKPIRQ) enable	RW	1
5	POK negative edge IRQ (POKNIRQ) enable	RW	1
4	POK short time active IRQ (POKSIRQ) enable	RW	1
3	POK long time active IRQ (POKLIRQ) enable	RW	1
2	POK off time active IRQ (POKOIRQ) enable	RW	1
1	GPIO1 input edge IRQ enable	RW	0
0	GPIO0 input edge IRQ enable	RW	0

11.53 REG 45H: IRQ Enable 6

Default: 00H

Bit	Description	R/W	Default
7-2	Reserved		
1	BC_USB_ChngInEn (BC USB Status Change Interrupt Enable)	RW	0
0	MV_ChngIntEn (Rid MV_ChngEvnt Interrupt Enable)	RW	0

11.54 REG 48H: IRQ Status 1

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	ACIN over voltage IRQ, write 1 to it or ACIN drop to normal will clear it	RW	0
6	ACIN from low go high IRQ, write 1 to it or ACIN from high go low will clear it	RW	0
5	ACIN from high go low IRQ, write 1 to it or ACIN from low go high will clear it	RW	0
4	VBUS over voltage IRQ, write 1 to it or VBUS drop to normal will clear it	RW	0
3	VBUS from low go high IRQ, write 1 to it or VBUS from high go low will clear it	RW	0
2	VBUS from high go low IRQ, write 1 to it or VBUS from low go high will clear it	RW	0
1-0	Reserved	RW	0

11.55 REG 49H: IRQ Status 2

Default: 00H

Reset: power on reset

Bit	Description	R/W	Default
7	Battery append IRQ, write 1 to it or Battery remove will clear it	RW	0
6	Battery absent IRQ, write 1 to it or Battery append will clear it	RW	0
5	Battery maybe bad IRQ, write 1 to it or PMIC quit battery safe mode will clear it	RW	0
4	Quit battery safe mode IRQ, write 1 to it or The PMIC enter battery safe mode will clear it	RW	0
3	Charger is charging IRQ, write 1 to it or charging is stop will clear it	RW	0
2	Battery charge done IRQ, write 1 to it or charger restart charging will clear it	RW	0
1-0	Reserved		

11.56 REG 4AH: IRQ Status 3

Default: 00H

Bit Description R/	R/W	Default	l
--------------------	-----	---------	---

7	CBTOIRQ, write 1 to it or Battery temperature drop to normal will clear it	RW	0
6	QCBTOIRQ, write 1 to it or Battery over temperature will clear it	RW	0
5	CBTUIRQ, write 1 to it or Battery temperature rise to normal will clear it	RW	0
4	QCBTUIRQ, write 1 to it or Battery under temperature will clear it	RW	0
3	WBTOIRQ, write 1 to it or Battery drop to temperature will clear it	RW	0
2	QWBTOIRQ, write 1 to it or Battery over temperature will clear it	RW	0
1	WBTUIRQ, write 1 to it or Battery rise to temperature will clear it	RW	0
0	QWBTUIRQ, write 1 to it or Battery under temperature will clear it	RW	0

11.57 REG 4BH: IRQ Status 4

Default: 00H

Reset: Bit [7] reset is power on reset, Bit [6:0] reset is system reset

Bit	Description	R/W	Default
7	OTIRQ, write 1 to it or IC temperature drop to normal will clear it	RW	0
6-3	Reserved	RW	0
2	GPADC(GPIO0) ADC convert finished IRQ, write 1 will clear it	RW	0
1	IRQ which indicate battery capacity ratio being lower than warning level 1, (WL1IRQ);	RW	0
	write 1 to it or system power rise up to warning level 1 will clear it		
0	IRQ which indicate battery capacity ratio being lower than warning level 2, (WL2IRQ);	RW	0
	write 1 to it or system power rise up to warning level 2 will clear it		

11.58 REG 4CH: IRQ Status 5

Default: 00H

Bit	Description	R/W	Default
7	Event timer timeout IRQ, write 1 will clear it	RW	0
6	POKPIRQ, write 1 to it will clear it	RW	0
5	POKNIRQ, write 1 to it will clear it	RW	0
4	POKSIRQ, write 1 to it will clear it	RW	0
3	POKLIRQ, write 1 to it will clear it	RW	0
2	POKOIRQ, write 1 to it will clear it	RW	0
1	GPIO1 input edge IRQ, write 1 will clear it	RW	0
0	GPIO0 input edge IRQ, write 1 will clear it	RW	0

11.59 REG 4DH: IRQ Status 6

Default: 00H

Reset: Reset by VBUS negedge

Bit	Description	R/W	Default
7-2	Reserved		
	BC_USB_ChngEvnt (BC USB Status Change Event)		
	This bit indicates that there is a change in the BC_USB_Sta_R register. When this bit is		
1	1, and the interrupt on the BC_Charge_ChngInEn	RW	0
	is 1, the BC Module will issue an interrupt to the controller.		
	This bit and associated interrupt is clean by writing '1'.		
	MV_ChngEvnt (MultValIdBc Multi-Valued input changed Event)		
	This bit indicates that there is a change in the value of MultValldBc field. When this		
0	bit is 1, and the interrupt on the MV_ChngIntEn is 1, the BC Module will issue an	RW	0
	interrupt to the controller.		
	This bit and associated interrupt is clean by writing '1'.		

11.60 REG 58H: TS Pin Input ADC Data, Highest 8bit

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-0	TS pin input ADC data highest 8bits, Default is Battery temperature	R	00

11.61 REG 59H: TS Pin Input ADC Data, Lowest 4bit

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	TS pin input ADC data lowest 4bits,Default is Battery temperature	R	00

11.62 REG 5AH: GPADC Pin Input ADC Data, Highest 8bit

Default: 00H

Bit	Description	R/W	Default
7-0	GPADC pin input ADC data, highest 8bit	R	00

11.63 REG 5BH: GPADC Pin Input ADC Data, Lowest 4bit

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	GPADC pin input ADC data, lowest 4bit	R	00

11.64 REG 78H: Average Data Bit[11:4] For Battery Voltage (BATSENSE)

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery voltage (BATSENSE)	R	00

11.65 REG 79H: Average Data Bit[3:0] For Battery Voltage (BATSENSE)

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Average data bit[3:0] for Battery voltage (BATSENSE)	R	00

11.66 REG 7AH: Average Data Bit[11:4] For Battery Charge Current

Default: 00H

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery charge current	R	00

11.67 REG 7BH: Average Data Bit[3:0] For Battery Charge Current

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Average data bit[3:0] for Battery charge current	R	00

11.68 REG 7CH: Average Data Bit[11:4] For Battery Discharge Current

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery discharge current	R	00

11.69 REG 7DH: Average Data Bit[3:0] For Battery Discharge Current

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Average data bit[3:0] for Battery discharge current	R	00

11.70 REG 80H: DCDC PWM/PFM Mode Select

Default: 80H

Bit	Description	R/W	Default
7	Reserved	R/W	1
6	Reserved	RW	0
5	DCDC6 PFM/PWM control	RW	0
	0: auto switch; 1: always PWM		
4	DCDC5 PFM/PWM control	RW	0
	0: auto switch; 1: always PWM		
3	DCDC4 PFM/PWM control	RW	0
	0: auto switch; 1: PSM/PWM		

	When this bit is set as '1', refer to REG3B bit [4] for DCDC mode select		
2	DCDC3 PFM/PWM control	RW	0
	0: auto switch; 1: PSM/PWM		
	When this bit is set as '1', refer to REG3B bit [4] for DCDC mode select		
1	DCDC2 PFM/PWM control	RW	0
	0: auto switch; 1: PSM/PWM		
	When this bit is set as '1', refer to REG3B bit [4] for DCDC mode select		
0	DCDC1 PFM/PWM control: 0: auto switch; 1: always PWM	RW	0

11.71 REG 81H: Off-Discharge And Output Monitor Control

Default: 80H

Reset: Power on reset

Bit	Description	R/W	Default
7	Internal off-Discharge enable for DCDC & LDO	RW	1
	0-disable; 1-enable		
6	Reserved	RW	0
5	DCDC6 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable		
4	DCDC5 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable		
3	DCDC4 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable		
2	DCDC3 85% Low voltage turn off PMIC function enable:		
	0-disable; 1-enable		
1	DCDC2 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable		
0	DCDC1 85% Low voltage turn off PMIC function enable:	RW	0
	0-disable; 1-enable		

11.72 REG 82H: ADC Enable

Default: E1H

Bit	Description		R/W	Default
7	BAT voltage ADC enable	0: off; 1: on	RW	1
6	BAT current ADC enable	0: off; 1: on	RW	1

5	Die temperature ADC enable	0: off; 1: on	RW	1
4	GPIO0 ADC enable	0: off; 1: on	RW	0
3-1	Reserved			
0	TS pin input to ADC enable	0: off; 1: on	RW	1

11.73 REG 84H: ADC Speed Setting, TS Pin Control

Default: F2H

Reset: power on reset

Bit	Description	R/W	Default
7-6	Current source from GPIO0 pin control:		11
	00: 20uA; 01: 40uA; 10: 60uA; 11: 80uA		
5-4	Current source from TS pin control:		11
	00: 20uA; 01: 40uA; 10: 60uA; 11: 80uA		
3	reserved	RW	0
2	TS pin function select:		0
	0-TS pin is the battery temperature sensor input and will affect the charger		
	1-TS pin is an External input for ADC and do not affect the charger		
1-0	Current source from TS pin on/off enable bit [1:0]	RW	10
	00: off; 01: on when charging battery, off when not charging;		
	10: on in ADC phase and off when out of the ADC phase, for power saving;		
	11: always on		
	Note: TS pin and GPIO0ADC pin are same current source, so if set the TS current		
	source is always on, the GPIO0ADC is invalid		

11.74 REG 85H: ADC Speed Setting

Default: BOH

Bit	Description		R/W	Default
7	TS/GPIO0 ADC speed setting bit 1	100×2 ⁿ	RW	1
6	TS/GPIO0 ADC speed setting bit 0	So Fs=25, 50, 100, 200Hz	RW	0
5	Vol/Cur ADC speed setting bit 1 100×2 ⁿ		RW	1
4	Vol/Cur ADC speed setting bit 0	So Fs=100, 200, 400, 800Hz	RW	1
3	Reserved			
2	GPIO0 ADC work mode		RW	0
	0: not output current; 1: output current			

1-0	Reserved	RW	00	l
-----	----------	----	----	---

11.75 REG 8AH: Timer Control

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7	Timer time out status		0
	It indicate that timer time out when this bit from low go high		
	Write this bit to 1, will clear the status and the timer		
6-0	Set threshold of the timer	RW	0000000
	Write these 7 bits to all 0, will disable the timer		

11.76 REG 8EH: DCDC Output Voltage Monitor De-bounce Time Setting

Default: 40H

Reset: Power on reset

Bit	Description	R/W	Default
7-6	DCDC output voltage monitor de-bounce time setting, 00: 62us; 01: 124us; 10: 186us; 11: 248us	RW	01
5-0	Reserved	RW	00

11.77 REG 8FH: IRQ Pin, Hot-Over Shut Down

Default: 00H (Note: bit4 default is customized)

Bit	Description	R/W	Default
7	IRQ pin turn on or wakeup PMIC function enable	RW	0
	0: disable; 1: enable		
6	ACIN and VBUS short or not depending on	RW	0
	0: REG00[1], auto detect; 1: REG8F[5]		
5	ACIN and VBUS short or not setting		0
	0: not short; 1: short		
4	N_VBUSEN pin function control	RW	0
	0: DRIVEVBUS, which is an output pin;		
	1: N_VBUSEN, which is an input pin		
3	The function control that 16s' POK trigger power on reset: 0-disable; 1-enable	RW	0

2	The PMIC shut down or not when Die temperature is over the warning level 3		0
	0-not shut down; 1-shut down		
1	Voltage recovery enable bit when AXP802 wakeup from REG31H[3]=1	RW	0
	0: recovery to the default voltage;		
	1: not recovery to the default voltage, the voltage not change		
0	When PMIC is on work status, if drive low PWROK pin, the PMIC will restart function	RW	0
	enable		
	0: disable; 1: enable		

11.78 REG 90H: GPIO0 (GPADC) Control

Default: 07H Reset: system reset

Bit		Description	R/W	Default
7	Enable GPIO0 Positive edge trigger IRQ	or wake up when GPIO0 is digital input	RW	0
	0: disable; 1: enable			
6	Enable GPIO0 Negative edge trigger IR	Q or wake up when GPIOO is digital input	RW	0
	0: disable; 1: enable			
5-3	Reserved		RW	0
2	GPIO0 pin function control bit 2	000: drive low	RW	1
		001: drive high		
1	GPIO0 pin function control bit 1	010: digital input, trigger point is about 1.2V	RW	1
		011: low noise LDO on		
0	GPIO0 pin function control bit 0	100: low noise LDO off	RW	1
		101-111: Floating, if ADC enable, then work as		
		ADC input mode		

11.79 REG 91H: GPIO0LDO And GPIO0 High Level Voltage Setting

Default: 1AH
Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved		
4-0	GPIO0LDO and GPIO0 High level voltage setting bit 4-0		11010
	From 0.7 to 3.3V, 100mV/step, 11011-11111 reserved		

11.80 REG 92H: GPIO1 Control

Default: 07H

Reset: system reset

Bit	Description			Default
7	Enable GPIO1 Positive edge trigger	IRQ or wake up when GPIO1 is digital input	RW	0
	0: disable; 1: enable			
6	Enable GPIO1 Negative edge trigge	er IRQ or wake up when GPIO1 is digital input	RW	0
	0: disable; 1: enable			
5-3	Reserved			
2	GPIO1 pin function control bit 2	000: drive low	RW	1
		001: drive high		
1	GPIO1 pin function control bit 1	010: digital input, trigger point is about 1.2V	RW	1
	011: low noise LDO on			
0	GPIO1 pin function control bit 0	100: low noise LDO off	RW	1
		101-111: Floating		

11.81 REG 93H: GPIO1LDO And GPIO1 High Level Voltage Setting

Default: 1AH

Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	GPIO1LDO and GPIO1 High level voltage setting bit 4-0	RW	11010
	From 0.7 to 3.3V, 100mV/step, 11011-11111 reserved		

11.82 REG 94H: GPIO Signal Bit

Default: 00H

Bit	Description	R/W	Default
7-2	Reserved		
1	This bit reflect the logic level of the GPIO1 pin when configured as digital input	R	0
0	This bit reflect the logic level of the GPIO0 pin when configured as digital input	R	0

11.83 REG 97H: GPIO Pull Down Control

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
7-2	Reserved		
1	GPIO1 Pull down control in digital input mode	RW	0
	0: off; 1: on		
0	GPIO0 Pull down control in digital input mode	RW	0
	0: off; 1: on		

11.84 REG A0H: Real Time Data Bit[11:4] For Battery Voltage (BATSENSE)

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-0	Real time data bit[11:4] for Battery voltage (BATSENSE)	R	00

11.85 REG A1H: Real Time Data Bit[3:0] For Battery Voltage (BATSENSE)

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Real time data bit[3:0] for Battery voltage (BATSENSE)	R	00

11.86 REG B8H: Fuel Gauge Control

Default: COH

Bit	Description	R/W	Default
7	fuel gauge enable control(including OCV and coulomb meter)	RW	1
	0: Disable; 1: Enable		
6	Coulomb meter enable control	RW	1
	0: Disable; 1: Enable		
5	Battery maximum capacity calibration enable control	RW	0

	0: Disable; 1: Enable		
4	Battery maximum capacity calibration status	R	0
	0: Not calibrating; 1: Is calibrating		
3	OCV-SOC curve calibration enable control	RW	0
	0: Disable; 1: Enable		
	Suggest set this bit as 0		
2	OCV-SOC curve calibration status	R	0
	0: Not calibrating; 1: Is calibrating		
1-0	Reserved	RW	0

11.87 REG B9H: Battery Capacity Percentage For Indication

Default: 64H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if battery capacity percentage for indication is valid	R	0
	0: Not valid; 1: Is valid		
6-0	Battery capacity percentage for indication	R	64H

11.88 REG BAH: RDC 1

Default: 80H

Reset: Bit [7] & [4-0] reset is power on reset

Bit	Description	R/W	Default
7	RDC calculation control	RW	1
	0: disable; 1: enable		
6	RDC was right detected or not flag:	R	0
	0: N; 1: Y		
5	RDC has detected or not during this power on time	R	0
	0: N; 1: Y		
4-0	RDC value HSB 5 bit	RW	00000

11.89 REG BBH: RDC 0

Default: 5DH

Bit	Description	R/W	Default
-----	-------------	-----	---------

7-0	RDC value LSB 8bit	RW	5DH
-----	--------------------	----	-----

11.90 REG BCH: OCV 1

Default: 00H

Reset: power on reset

Bit	Description	R/W	Default
7-0	OCV HSB 8bit	R	00H

11.91 REG BDH: OCV0

Default: 00H

Reset: power on reset

Bit	Description	R/W	Default
7-4	Reserved		
3-0	OCV LSB 4bit	R	0000

11.92 REG EOH: Battery Maximum Capacity

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if battery maximum capacity is valid	R/W	0
	0: Not valid; 1: Is valid		
6-0	battery maximum capacity bit[14:8]	RW	00H

11.93 REG E1H: Battery Maximum Capacity

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7-0	battery maximum capacity bit[7:0] (Unit: 1.456mAh)	RW	00H

11.94 REG E2H: Coulomb Meter Counter1

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if coulomb meter counter is valid:	RW	0
	0: Not valid; 1: Is valid		
6-0	Coulomb meter counter[14:8]	RW	00H

11.95 REG E3H: Coulomb Meter Counter2

Default: 00H

Reset: Power on reset

Bit	Descripti	on		F	R/W	Default	
7-0	Coulomb meter counter[7:0] (Unit: 1.456m	Ah)			RW	H00	l

11.96 REG E4H: OCV Percentage Of Battery Capacity

Default: 64H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if OCV percentage of battery capacity is valid 0: Not valid; 1: Is valid	R	0
6-0	OCV percentage of battery capacity	R	64H

11.97 REG E5H: Coulomb Meter Percentage Of Battery Capacity

Default: 64H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if coulomb meter percentage of battery capacity is valid:	R	0
	0: Not valid; 1: Is valid		
6-0	Coulomb meter percentage of battery capacity	R	64H

11.98 REG E6H: Battery Capacity Percentage Warning Level

Default: A0H

Bit	Description	R/W	Default
7-4	Warning level 1: Warning threshold, 5-20%, 1% per step	RW	1010

11.99 REG E8H: Fuel Gauge Tuning Control 0

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7-3	Reserved		
2-0	Battery capacity percentage for indication update minimum interval	RW	0
	000-30s		
	001-60s		
	010-120s		
	011-164s		
	100-immediately update when changed		
	101-5s		
	110-10s		
	111-20s		

11.100 REG E9H: Fuel Gauge Tuning Control 1

Default: 00H

Bit	Description	R/W	Default
7-6	OCV Percentage calibrate the Coulomb meter percentage, maximum time interval	RW	0
	00-60s		
	01-120s		
	10-15s		
	11-30s		
5-3	Wait for the stability for charge when in RDC calculation	RW	0
	000-180s		
	001-240s		
	010-300s		
	011-600s		
	100-30s		
	101-60s		
	110-90s		
	111-120s		
2-0	Wait for the stability for discharge when in RDC calculation	RW	0

000-180s	
001-240s	
010-300s	
011-600s	
100-30s	
101-60s	
110-90s	
111-120s	

11.101 REG EAH: Fuel Gauge Tuning Control 2

Default: 00H

Bit	Description	R/W	Default
7-6	OCV Percentage Debounce setting(only when the change continuous the same		0
	direction as more than N times, then the ocv percentage increase or decrease)N:		
	00-4		
	01-8		
	10-1		
	11-2		
5-4	Coulomb meter Percentage Debounce setting(only when the change continuous	RW	0
	the same direction as more than N times, then the ocv percentage increase or		
	decrease)N:		
	00-4		
	01-8		
	10-1		
	11-2		
3	Battery maximum capacity and OCV-SOC curve calibration start condition:	RW	0
	0-OCV percentage < (REG E6H[3:0] + 3)		
	1-OCV percentage < (REG E6H[3:0] + 6)		
2	Battery maximum capacity calibration end condition 0	RW	0
	0-OCV percentage ≥ 95%		
	1-OCV percentage = 100%		
1	Battery maximum capacity calibration end condition 1	RW	0
	0-wait for charge finished		
	1-do not wait for charge finished		
0	Battery maximum capacity calibration end condition 2	RW	0
	wait N ms for the charge finished indication signal after REG 01H[6] clear to 0,		

N is set: 0-68 1-120

11.102 REG EBH: Fuel Gauge Tuning Control 3

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	When charge status bit REG 01H[6] = 1,the percentage of indication can be	RW	0
	decrease or not		
	0-decrease enable		
	1-decrease disable		
6-4	When REG 01H[6] = 1, percentage of indication decrease hysteresis(N) setting	RW	0
	000-4% 001-5%		
	010-6%		
	011-7%		
	100-0%		
	101-1%		
	110-2%		
	111-3%		
3	Calculation RDC current condition setting	RW	0
	0-≥300mA		
	1-≥150mA		
2-0	Calibrate RDC percentage changed threshold setting	RW	0
	000-4%		
	001-5%		
	010-6%		
	011-7%		
	100-0%		
	101-1%		
	110-2%		
	111-3%		
	calibration: Δ OCVPCT > N		

11.103 REG ECH: Fuel Gauge Tuning Control 4

Default: 00H

Bit	Description	R/W	Default
7	ADC current data include offset0 or not(For debug)	RW	0
	0: Enable; 1: Disable		
6	ADC current data offset0 smooth control(For debug)	RW	0
	0: Enable; 1: Disable		
5	RDC re-calculate when PMIC power on for power off	RW	0
	0: Disable; 1: Enable		
4-3	The minimum battery voltage for RDC calculation	RW	00
	00: 3.5V; 01: 3.6V;		
	10: 3.7V; 11: 3.4V		
2-0	Coulomb counter calibration threshold,relative with REG_E6_[3:0]	RW 000	000
	000-REG_E6H[3:0]+7(default)		
	001-REG_E6H[3:0]+8		
	010-REG_E6H[3:0]+9		
	011-REG_E6H[3:0]+10		
	100-REG_E6H[3:0]+3		
	101-REG_E6H[3:0]+4		
	110-REG_E6H[3:0]+5		
	111-REG_E6H[3:0]+6		

11.104 REG EDH: Fuel Gauge Tuning Control 5

Default: 00H

Bit	Description	R/W	Default
7	OCV percentage relative with the charge/discharge rate control	RW	0
	0-Disable		
	1-Enable		
6	Update time when rate > 0.5C	RW	0
	0-30S		
	1-15S		
5-4	Update time when rate < 0.5C and rate > 0.1C	RW	00
	00-60S		
	01-75S		
	10-30S		
	11-45S		

3-2	Update time when rate < 0.1C	RW	00
	00-120S		
	01-180S		
	10-240S		
	11-60S		
1-0	Fixed update time	RW	00
	00-30S		
	01-45S		
	10-60S		
	11-15S		

12 Package

AXP802 is available in 8mm x 8mm 68 pin QFN package.

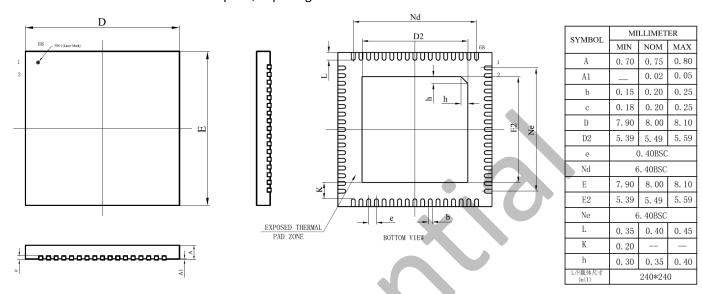


Figure 11. AXP802 Package

Package materials information

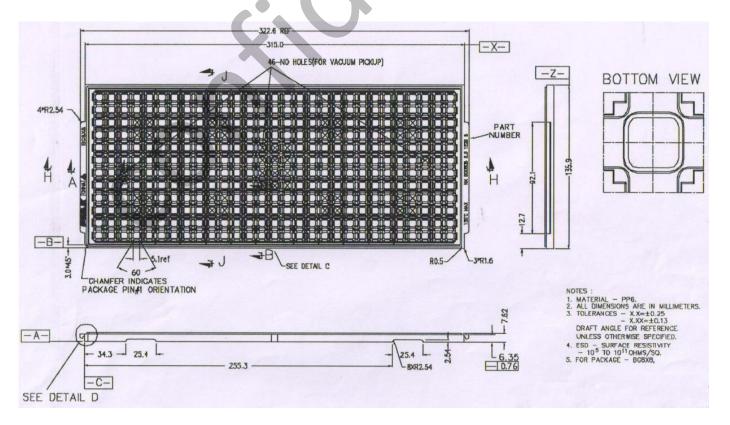


Figure 12. AXP802 Package Materials Information

Order Information

Туре	Quantity	Part Number
Tray	348pcs/Tray	AXP802
	10Trays/package	AAPOUZ

