
DesignWare Synthesizable Components for AMBA 2

DesignWare DW_apb_uart Databook

DW_apb_uart

Version 3.04a

January 20, 2006

Copyright Notice and Proprietary Information
Copyright © 2006 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is
the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in
accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or
translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys,
Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to
nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the
applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CSim, Design
Compiler, DesignPower, DesignWare, EPIC, Formality, HSPICE, Hypermodel, I, iN-Phase, in-Sync, Leda, MAST, Meta, Meta-
Software, ModelAccess, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill, PrimeTime,
RailMill, Raphael, RapidScript, Saber, SiVL, SNUG, SolvNet, Stream Driven Simulator, Superlog, System Compiler, Testify,
TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)
abraCAD, abraMAP, Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-
Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis,
Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci,
DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,
DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI,
Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ,
Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA Express,
Frame Compiler, Galaxy, Gatran, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical
Optimization Technology, High Performance Option, HotPlace, HSPICE-Link, iN-Tandem, Integrator, Interactive Waveform
Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler,
Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway,
ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint,
Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS,
Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael,
Raphael-NES, RoadRunner, RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger,
Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire,
Source-Level Design, Star, Star-DC, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT,
Star-Time, Star-XP, SWIFT, Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand,
True-Hspice, TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL
System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

2 Synopsys, Inc. January 20, 2006

DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 3

DesignWare DW_apb_uart Databook Contents

Contents

Preface . 7
About This Manual . 7

Related Documents . 7
Manual Overview . 7
Typographical and Symbol Conventions . 8

Getting Help . 9
Additional Information . 10

Comments? . 10

Chapter 1
Product Overview . 11

DesignWare AMBA System Overview . 11
DesignWare AMBA System Block Diagram . 11

General Product Description . 12
DW_apb_uart Block Diagram . 14

Features . 16
Standards Compliance . 17
Speed and Clock Requirements . 17
Verification Environment Overview . 17
Licenses . 18
Where To Go From Here . 18

Chapter 2
Building and Verifying a Subsystem . 21

Setting up Your Environment . 22
Overview of the Configuration and Integration Process . 22
Start Connect . 24
Check Your Environment . 25
Add DW_apb_uart to the Subsystem . 26
Configure DW_apb_uart . 29
Complete Signal Connections . 30
Generate Subsystem RTL . 30
Create Gate-Level Netlist . 32

Checking Synthesis Status and Results . 34
Synthesis Output Files . 35
Running Synthesis from Command Line . 35

Create Component GTECH Simulation Model . 35
Verify Component . 37

Checking Simulation Status and Results . 39
Applying Default Verification Attributes . 40

Verify the Subsystem . 40
Formal Verification . 40

4 Synopsys, Inc. January 20, 2006

Contents DesignWare DW_apb_uart Databook

Simulate Subsystem . 40
Checking Subsystem Verification Status and Results . 42

Create a Batch Script . 42
Export the Subsystem . 43

Chapter 3
Functional Description . 45

UART (RS232) Serial Protocol . 45
IrDA 1.0 SIR Protocol . 47
FIFO Support . 48
Clock Support . 49
Interrupts . 51
Auto Flow Control . 51
Programmable THRE Interrupt . 54
Clock Gate Enable . 56
DMA Support . 58

Chapter 4
Parameters . 69

Parameter Descriptions . 69

Chapter 5
Signals . 75

DW_apb_uart Interface Diagram . 76
DW_apb_uart Signal Descriptions . 77

Chapter 6
Registers . 87

Register Memory Map . 87
Register and Field Descriptions . 90

RBR . 91
THR . 92
DLH . 93
DLL . 94
IER . 95
IIR . 96
FCR . 98
LCR . 100
MCR . 102
LSR . 104
MSR . 107
SCR . 109
LPDLL . 110
LPDLH . 111
SRBR . 112
STHR . 113
FAR . 114
TFR . 115

January 20, 2006 Synopsys, Inc. 5

DesignWare DW_apb_uart Databook Contents

RFW . 116
USR . 117
TFL . 118
RFL . 119
SRR . 120
SRTS . 121
SBCR . 122
SDMAM . 123
SFE . 124
SRT . 125
STET . 126
HTX . 127
DMASA . 127
CPR . 128
UCV . 129
CTR . 130

Chapter 7
Programming the DW_apb_uart . 131

Software Drivers . 131

Chapter 8
Verification . 133

Overview of DW_apb_uart Testbench . 134

Chapter 9
Integration Considerations . 137

Reading and Writing from an APB Slave . 137
Reading From Unused Locations . 138
32-bit Bus System . 139
16-bit Bus System . 139
8-bit Bus System . 140

Write Timing Operation . 140
Read Timing Operation . 141
Accessing Top-level Constraints . 142
Coherency . 142

Writing Coherently . 143
Reading Coherently . 150

Appendix A
Building and Verifying Your DW_apb_uart . 153

Set up Your Environment . 153
Start coreConsultant . 154
Check Your Environment . 155
Configure DW_apb_uart . 155
Create Gate-Level Netlist . 156

Checking Synthesis Status and Results . 159
Synthesis Output Files . 159

6 Synopsys, Inc. January 20, 2006

Contents DesignWare DW_apb_uart Databook

Running Synthesis from Command Line . 159
Verifying the DW_apb_uart . 160

Creating GTECH Simulation Models . 160
Verifying the Simulation Model . 162

Appendix B
Database Description . 167

Design/HDL Files . 168
RTL-Level Files . 168
Simulation Model Files . 169

Register Map Files . 169
Synthesis Files . 170
Verification Reference Files . 170

Appendix C
DesignWare QuickStart Designs . 171

QuickStart Example Designs . 171

Appendix D
Glossary . 173

Index . 177

January 20, 2006 Synopsys, Inc. 7

DesignWare DW_apb_uart Databook Preface

Preface

About This Manual
This databook provides information that you need to interface the DW_apb_uart component to the
Advanced Peripheral Bus (APB). This component conforms to the AMBA Specification, Revision 2.0
from ARM.

The information in this databook includes a functional description, pin and parameter descriptions, and
a memory map. Also provided are an overview of the component testbench, a description of the tests
that are run to verify the component, and synthesis information.

Related Documents
To see a complete listing of documentation within the DesignWare Synthesizable Components for
AMBA 2, refer to the Guide to DesignWare AMBA IP Component Documentation.

Note
Information on the DW_apb_uart component in this databook assumes that the reader is
fully familiar with the National Semiconductor 16550 (UART) component specification.
This specification can be obtained on the web at:

http://www.national.com/ds/PC/PC16550D.pdf

Information provided on IrDA SIR mode assumes that the reader is fully familiar with the
IrDa Serial Infrared Physical Layer Specification. This specification can be obtained from
the following website:

http://www.irda.org

Manual Overview
This manual contains the following chapters and appendixes:

Chapter 1
“Product Overview”

Provides a DesignWare AMBA System Overview, a component block
diagram, basic features, and an overview of the verification
environment Overview

Chapter 2
“Building and Verifying a
Subsystem”

Provides getting started information that allows you to walk through
the process of using the DW_apb_uart with Synopsys’ DesignWare
Connect tool.

http://www.synopsys.com/cgi-bin/designware/amba_ct.cgi
http://www.national.com/ds/PC/PC16550D.pdf
http://www.irda.org

8 Synopsys, Inc. January 20, 2006

Preface DesignWare DW_apb_uart Databook

Typographical and Symbol Conventions
The conventions in the following table are used throughout this document:

Chapter 3
“Functional Description”

Describes the functional operation of the DW_apb_uart

Chapter 4
“Parameters”

Identifies the configurable parameters supported by the DW_apb_uart

Chapter 5
“Signals”

Provides a list and description of the DW_apb_uart signals

Chapter 6
“Registers”

Describes the programmable registers of the DW_apb_uart

Chapter 7
“Programming the DW_apb_uart”

Provides information needed to program the configured DW_apb_uart

Chapter 8
“Verification”

Provides an overview of the testbench available for DW_apb_uart
verification.

Chapter 9
“Integration Considerations”

Includes information you need to integrate the configured
DW_apb_uart into your design

Appendix A
“Building and Verifying Your
DW_apb_uart”

Provides getting started information that allows you to walk through
the process of using the DW_apb_uart with Synopsys’ coreConsultant
tool.

Appendix B
“Database Description”

Provides deliverables and reference files generated from the
coreConsultant flow

Appendix C
“DesignWare QuickStart Designs”

Provides getting started information that allows you to walk through
the process of using the DW_apb_uart with Synopsys’ coreConsultant
tool.

Appendix D
“Glossary”

Provides a glossary of general terms

Table 1: Documentation Conventions

Convention Description and Example

% Represents the UNIX prompt.

Bold User input (text entered by the user).
% cd $LMC_HOME/hdl

Monospace System-generated text (prompts, messages, files, reports).
No Mismatches: 66 Vectors processed: 66 Possible"

January 20, 2006 Synopsys, Inc. 9

DesignWare DW_apb_uart Databook Preface

Getting Help
If you have a question about using Synopsys products, please consult product documentation that is
installed on your network or located at the root level of your Synopsys product CD-ROM (if available).
You can also access documentation for DesignWare products on the Web:

● Product documentation for many DesignWare products:

http://www.synopsys.com/designware/docs

● Datasheets for individual DesignWare IP components, located using “Search for IP”:

http://www.synopsys.com/designware

You can also contact the Synopsys Support Center in the following ways:

● Open a call to your local support center using this page:

http://www.synopsys.com/support/support.html

● Send an e-mail message to support_center@synopsys.com.

● Telephone your local support center:

❍ United States:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

❍ Canada:
Call 1-650-584-4200 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

❍ All other countries:
Find other local support center telephone numbers at the following URL:

http://www.synopsys.com/support/support_ctr

Italic or Italic Variables for which you supply a specific value. As a command line example:
% setenv LMC_HOME prod_dir

In body text:
In the previous example, prod_dir is the directory where your product must be
installed.

| (Vertical rule) Choice among alternatives, as in the following syntax example:
-effort_level low | medium | high

[] (Square brackets) Enclose optional parameters:
pin1 [pin2 ... pinN]

In this example, you must enter at least one pin name (pin1), but others are optional
([pin2 … pinN]).

TopMenu >
SubMenu

Pulldown menu paths, such as:
File > Save As …

Table 1: Documentation Conventions (Continued)

Convention Description and Example

http://www.synopsys.com/designware/docs
http://www.synopsys.com/designware
http://www.synopsys.com/support/support.html
mailto:support_center@synopsys.com
http://www.synopsys.com/support/support_ctr/

10 Synopsys, Inc. January 20, 2006

Preface DesignWare DW_apb_uart Databook

Additional Information
For additional Synopsys documentation, refer to the following page:

http://www.synopsys.com/designware/docs

For up-to-date information about the latest Synthesizable IP and verification models, visit the
DesignWare home page:

http://www.synopsys.com/designware

Comments?
To report errors or make suggestions, please send e-mail to:

support_center@synopsys.com.

To report an error that occurs on a specific page, select the entire page (including headers and footers),
and copy to the buffer. Then paste the buffer to the body of your e-mail message. This will provide us
with information to identify the source of the problem.

http://www.synopsys.com/designware/docs
http://www.synopsys.com/designware
mailto:support_center@synopsys.com

January 20, 2006 Synopsys, Inc. 11

DesignWare DW_apb_uart Databook Chapter 1: Product Overview

1
Product Overview

The DW_apb_uart is a programmable Universal Asynchronous Receiver/Transmitter (UART). This
component is an AMBA 2.0-compliant Advanced Peripheral Bus (APB) slave device and is part of the
family of DesignWare AMBA Synthesizable Components.

This chapter describes the DW_apb_uart in the following sections:

● “DesignWare AMBA System Overview”
● “General Product Description” on page 12
● “Features” on page 16
● “Standards Compliance” on page 17
● “Speed and Clock Requirements” on page 17
● “Verification Environment Overview” on page 17
● “Licenses” on page 18
● “Where To Go From Here” on page 18

DesignWare AMBA System Overview
The Synopsys DesignWare AMBA Synthesizable Components environment is a parameterizable bus
system containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB
(Advanced Peripheral Bus) components.

DesignWare AMBA System Block Diagram
The following figure illustrates one example of this environment, including the AHB bus, the APB Bus
(includes the APB Bridge), AHB multi-layer interconnect IP, APB peripheral components, verification
Master/Slave models, and bus monitors. In order to display the databook for a DW_* component, click
on the corresponding component object in the illustration.

Attention
Links resolve only if you are viewing this databook from your $DESIGNWARE_HOME
tree, and to only those components that are installed in the tree.

12 Synopsys, Inc. January 20, 2006

Chapter 1: Product Overview DesignWare DW_apb_uart Databook

Figure 1: Example of DW_apb_uart in a Complete System

General Product Description
The Synopsys DW_apb_uart has been modeled after the industry-standard 16550. However, the
register address space has been relocated to 32-bit data boundaries for APB bus implementation. It can
be configured, synthesized, and verified using the Synopsys coreConsultant GUI to produce RTL.

The DW_apb_uart is used for serial communication with a peripheral, modem (data carrier equipment,
DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is
converted to serial form and transmitted to the destination device. Serial data is also received by the
UART and stored for the master (CPU) to read back.

The DW_apb_uart contains registers to control the character length, baud rate, parity
generation/checking, and interrupt generation. (Also see “DW_apb_uart Block Diagram” on page 14.)
Although there is only one interrupt output signal (intr) from the DW_apb_uart, there are several
prioritized interrupt types that can be responsible for its assertion. Each of the interrupt types can be
separately enabled/disabled with the control registers.

DW_ahbDW_apb

Star IP

apb_monitor_vmt

DW_ahb (2)

DW_ahb_icm

DW_memctl DW_ahb_dmac

AHB/APB Bridge

DW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

ahb_monitor_vmt

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

Third-party
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

DW_ahbDW_ahb

DW_ahb_ictl

Arbitration,
Decode, & Mux

Third-party
Peripherals

DW_ahb_dmac

APB Slave
BIMs

AHB Master/Slave
BIMs

RAM
Memory Models

DW_apb_i2c

μPs

January 20, 2006 Synopsys, Inc. 13

DesignWare DW_apb_uart Databook Chapter 1: Product Overview

The following paragraphs describe various functionality that you can configure into the DW_apb_uart:

Transmit and receive data FIFOs:
To reduce the time demand placed on the master by the DW_apb_uart, optional FIFOs are available to
buffer transmit and receive data. This means that the master does not have to access the DW_apb_uart
each time a single byte of data is received. The optional FIFOs can be selected at configuration time.

The FIFOs can be selected to be either external customer-supplied FIFO RAMs or internal DesignWare
D-flip-flop based RAMs (DW_ram_r_w_s_dff). When external RAM support is chosen, both
synchronous or asynchronous read-port memories are supported. When FIFO support is selected, an
optional test/debug mode is available to allow the receive FIFO to be written by the master and the
transmit FIFO to be read by the master.

DMA controller interface:
The DW_apb_uart can interface with a DMA controller by way of external signals (dma_tx_req_n and
dma_rx_req_n) to indicate when data is ready to be read or when the transmit FIFO is empty.
Additional optional DMA signals are available for DesignWare DMA controller interface compatibility
(such as interface with DW_ahb_dmac).

Asynchronous clock support:
To solve problems surrounding CPU data synchronization in relation to the required serial baud clock
requirements, an optional separate serial data clock can be selected. When it selected, all data crossing
between the two clock domains is guaranteed by full handshaking and level-syncing synchronization.

Auto flow control:
System efficiency can be increased and software load decreased with a 16750-compatible Auto Flow
Control Mode. When FIFOs and the Auto Flow Control are selected and enabled, serial data flow is
automatically controlled by the request-to-send (rts_n) output and clear-to-send (cts_n) input.

Programmable Transmit Holding Register Empty (THRE) interrupt:
System performance can be increased by a Programmable Transmitter Holding Register Empty
(THRE) Interrupt Mode. When FIFOs and the THRE Mode are selected and enabled, THRE Interrupts
are active at and below a programmed TX FIFO threshold level. In addition, the Line Status THRE
switches from indicating TX FIFO empty, to TX FIFO full. This allows software to set a threshold that
keeps the transmitter FIFO from running empty whenever there is data to transmit.

Serial infrared support:
For integration in systems where Infrared SIR serial data format is required, the DW_apb_uart can be
configured to have a software-programmable IrDA SIR Mode. If this mode is not selected, only the
UART (RS232 standard) serial data format is available.

Increase the built-in diagnostic capabilities:
To increase the built-in diagnostic capabilities of the DW_apb_uart, the Modem Control Loopback
Mode has been extended. Modem Status bits actually reflect Modem Control Register deltas, as well as
the bits themselves. Also, when FIFOs and Auto Flow Control Mode are selected and enabled, the
Modem Control RTS is internally looped back to the CTS to control the transmitter. This allows local
testing of the Auto CTS mode. In addition, the controllability of rts_n, via the receiver FIFO threshold,
can be observed via the RTS Modem Status bit. This allows local verification of the Auto RTS mode.

Level 1 and 2 debug support:
To help with debug issues, optional debug signals are available on the DW_apb_uart. To comply with
level 1 and 2 debug support requirements, many internal points of interest to the debugger are available
as outputs.

14 Synopsys, Inc. January 20, 2006

Chapter 1: Product Overview DesignWare DW_apb_uart Databook

DW_apb_uart Block Diagram
The following list briefly describes each of the major blocks shown in Figure 2 on page 15:

● Reset block.

● APB slave interface.

● Register block - is responsible for the main UART functionality including control, status and
interrupt generation.

● Modem Synchronization block - synchronizes the modem input signal.

● FIFO block (optional) - is responsible for FIFO control and storage (when using internal RAM) or
signaling to control external RAM (when used).

● Synchronization block (optional) - is implemented when the peripheral is configured to have a
separate serial data clock (i.e. two clock implementation).

● Timeout Detector block (optional) - indicates the absence of character data movement in the
receiver FIFO in a given time period. This is used to generate character timeout interrupts when
enabled. This block can also have an optional clock gate enable output(s) (uart_lp_req_pclk for
single clock implementations or uart_lp_req_pclk and uart_lp_req_sclk for two clock
implementations), to indicate that the TX and RX pipeline is clear (no data), no activity has
occurred and the modem control input signals have not changed in a given time period.

● Baud Clock Generator - produces the transmitter and receiver baud clock along with the output
reference clock signal (baudout_n).

● Serial Transmitter - converts the parallel data, written to the UART, into serial form and adds all
additional bits, as specified by the control register, for transmission. This makeup of serial data,
referred to as a character can exit the block in two forms, either serial UART format or IrDA 1.0
SIR format.

● Serial Receiver - converts the serial data character (as specified by the control register) received in
either the UART or IrDA 1.0 SIR format to parallel form. Parity error detection, framing error
detection and line break detection is carried out in this block.

January 20, 2006 Synopsys, Inc. 15

DesignWare DW_apb_uart Databook Chapter 1: Product Overview

Figure 2: DW_apb_uart Functional Block Diagram

sclk

intr

out2_n

soutsin

rts_n

cts_n

dtr_n

dsr_n

ri_n

dcd_n

out1_n

baudout_n

tx_ram_out

rx_ram_out

scan_mode

DW_apb_uart

sir_in sir_out_n

s_rst_n

uart_lp_req_sclk

dma_rx_singlea
dma_tx_singlea

dma_tx_reqa

dma_rx_reqa

 dma_rx_acka

debug

 dma_tx_acka

a Can either be low-active or high-active

FIFO
Block

(Optional)

tx_ram_we_n

tx_ram_in

tx_ram_rd_addr

tx_ram_wr_addr

rx_ram_in

rx_ram_rd_addr

rx_ram_re_n

rx_ram_wr_addr

rx_ram_we_n

tx_ram_re_n

 APB
Interfacepwdata

pwrite
penable

paddr

pclk

presetn

prdata

psel

Register
Block

Sync
Block

(Optional) Timeout
Detector
(Optional)

Baud
Clock

Generator

Serial Receiver Serial Transmitter

Optional signals denoted with dashed lines

uart_lp_req_pclk
Modem

Sync
Block

Reset
Block

tx_ram_rd_ce_n

rx_ram_rd_ce_n

16 Synopsys, Inc. January 20, 2006

Chapter 1: Product Overview DesignWare DW_apb_uart Databook

Features
● AMBA APB interface allows easy integration into AMBA SoC implementations

● Configurable parameters for the following:

❍ APB data bus widths of 8, 16 and 32
❍ Additional DMA interface signals for compatibility with DesignWare DMA interface
❍ DMA interface signal polarity
❍ Transmit and receive FIFO depths of none, 16, 32, 64,…,2048
❍ Internal or external FIFO (RAM) selection
❍ Use of two clocks (pclk and sclk) instead of one (pclk)
❍ IrDA 1.0 SIR mode support with up to 115.2 Kbaud data rate and a pulse duration (width) as

follows: width = 3/16 × bit period as specified in the IrDA physical layer specification
❍ IrDA 1.0 SIR low-power reception capabilities
❍ Baud clock reference output signal
❍ Clock gate enable output(s) used to indicate that the TX and RX pipeline is clear (no data) and

no activity has occurred for more than one character time, so clocks may be gated
❍ FIFO access mode (for FIFO testing) so that the receive FIFO can be written by the master

and the transmit FIFO can be read by the master
❍ Additional FIFO status registers
❍ Shadow registers to reduce software overhead and also include a software programmable reset
❍ Auto Flow Control mode as specified in the 16750 standard
❍ Loopback mode that enables greater testing of Modem Control and Auto Flow Control

features (Loopback support in IrDA SIR mode is available)
❍ Transmitter Holding Register Empty (THRE) interrupt mode

● Ability to set some configuration parameters in instantiation

● Configuration identification registers present

● Functionality based on the 16550 industry standard, as follows:

❍ Programmable character properties, such as number of data bits per character (5-8), optional
parity bit (with odd or even select) and number of stop bits (1, 1.5 or 2)

❍ Line break generation and detection
❍ DMA signaling with two programmable modes
❍ Prioritized interrupt identification

● Programmable FIFO enable/disable

● Programmable serial data baud rate as calculated by the following:
baud rate = (serial clock frequency)/(16×divisor)

● External read enable signal for RAM wake-up when using external RAMs

● Modem and status lines are independently controlled

● Complete RTL version

● Separate system resets for each clock domain to prevent metastability

January 20, 2006 Synopsys, Inc. 17

DesignWare DW_apb_uart Databook Chapter 1: Product Overview

Standards Compliance
The DW_apb_uart component conforms to the AMBA Specification, Revision 2.0 from ARM. Readers
are assumed to be familiar with this specification.

Note
Information on the DW_apb_uart component in this databook assumes that the reader is
fully familiar with the National Semiconductor 16550 (UART) component specification.
This specification can be obtained on the web at:

http://www.national.com/pf/PC/PC16550D.html#Datasheet

Information provided on IrDA SIR mode assumes that the reader is fully familiar with the
IrDa Serial Infrared Physical Layer Specification. This specification can be obtained from
the following website:

http://www.irda.org

Speed and Clock Requirements
This section describes some of the test conditions that have been met to-date by the DW_apb_uart
regarding clock speed and baud rates.

The DW_apb_uart has been synthesized and simulated with a pclk of 166 Mhz at 0.18 microns. It met
timing requirements at these speeds. The sclk signal was set to 25 MHz with a baud devisor of 1 to give
a max baud rate of just over 1.5 M. This is the baud rate referred to in the National 16550 specification.

Verification Environment Overview
The DW_apb_uart is put through a verification process which utilizes constrained randomized testing
(or CRT). This process is divided into several “groups” – for testing of the DW_apb_uart’s hardware
associated with the transmit, receive, loopback and debug. Under normal verification runs, the test
group selected is randomly chosen for a given DW_apb_uart hardware configuration, although some
amount of user-controlled selection is possible.

Under each group of tests, two more levels of randomization of the test stimulus are applied – one at
the higher “system” level associated with nature of the test chosen, and one at the “parametric” level
associated with the DW_apb_uart’s registers. In doing so, control and/or intervention of/in the
verification process and scope by the user is reduced to a minimum.

The “system” level of randomization ensures that the DW_apb_uart is, for example, injected with a
varying number of characters of arbitrary contents, as well as the type and number of character
corruptions applied.

The “parametric” level of randomization applied to the DW_apb_uart ensures that the DW_apb_uart’s
hardware is programmed as arbitrarily as possible; for example, the line settings for the characters
exchanged during simulations, the varying patterns for the interrupt enables, as well as the various
transmit/receive trigger thresholds.

http://www.national.com/pf/PC/PC16550D.html#Datasheet
http://www.irda.org
http://www.synopsys.com/cgi-bin/designware/amba_ct.cgi

18 Synopsys, Inc. January 20, 2006

Chapter 1: Product Overview DesignWare DW_apb_uart Databook

Once the required set of randomized “system” and “parametric” variables are obtained, three separate
groups of testcode are kicked off concurrently – one for the generating of the stimulus for the
DW_apb_uart and supporting models; one for the overall environment support, such as scoreboarding,
messaging, signal transition detections, etc.; and lastly, one for the checkers.

To support the serial exchanges of characters, in both the IrDA and normal transfer modes, VERA
models in the SIO VIP are used. Two instances of both the SIOTxrx and the SIOMonitor models assist
in verifying that the DW_apb_uart’s hardware functionalities.

To support DMA-controlled transfers to and from the DW_apb_uart, an instance of a AHB DMA BFM
is also included. This acts as an independent AHB master issuing AHB transfer commands separately
from the AHB master model used to control the DW_apb_uart.

Licenses
Before you begin using the DW_apb_uart, you must have a valid license. For more information, refer
to “Licenses” in the DesignWare AMBA Synthesizable Components Installation Guide.

Where To Go From Here
At this point, you may want to get started working with the DW_apb_uart component within a
subsystem or by itself. Synopsys provides several tools within its coreTools suite of products for the
purposes of configuration, synthesis, and verification of single or multiple synthesizable IP
components—coreConsultant and coreAssembler. For information on the different coreTools, refer to
Guide to coreTools Documentation.

While coreConsultant is the basic tool used to create a workspace for a single component,
coreAssembler enables you to work with a component within the context of a subsystem. (A workspace
is your working version of a DesignWare AMBA Synthesizable IP component.)

Additionally, the DesignWare Connect tool is designed around coreAssembler, but is customized
specifically for DesignWare AMBA-based subsystems. Connect also provides additional subsystem
simulation functionality that enhances coreAssembler.

The following table provides common activities and the recommended tool for either single or multiple
components.

Table 2: Tool Comparison

Activity Recommended Tool

Single Component

Configuration coreConsultant

Synthesis coreConsultant

Verification coreConsultant

Multiple Components

Configuration coreAssembler or Connect

Synthesis coreAssembler or Connect

January 20, 2006 Synopsys, Inc. 19

DesignWare DW_apb_uart Databook Chapter 1: Product Overview

For more information about implementing your DW_apb_uart component within a DesignWare
AMBA subsystem using DesignWare Connect, refer to Chapter 2, “Building and Verifying a
Subsystem” on page 21.

For more information about configuring, synthesizing, and verifying just your DW_apb_uart
component, refer to Appendix A, “Building and Verifying Your DW_apb_uart” on page 153.

Formal verification coreAssembler or Connect

Creation of top-level subsystem RTL coreAssembler or Connect

Address map creation Connect

Subsystem simulation Connect

Creation of subsystem templates coreAssembler

Importation of non-DesignWare IP coreAssembler

Table 2: Tool Comparison (Continued)

Activity Recommended Tool

20 Synopsys, Inc. January 20, 2006

Chapter 1: Product Overview DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 21

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

2
Building and Verifying a Subsystem

This chapter documents the step-by-step process you use to connect, configure, synthesize, and verify a
DW_apb_uart component within a simple DesignWare AMBA subsystem using the DesignWare
Connect tool. You use Connect to create a workspace, which is your working version of a DesignWare
AMBA Synthesizable IP (SIP) subsystem. You can create several workspaces to experiment with
different design alternatives.

Connect uses coreAssembler as the base tool, but it adds subsystem simulation to the standard
coreAssembler functionalities. Complete information about the latest version of Connect is available
on the web in the DesignWare Connect User Guide. To view documentation specific to your version of
Connect, choose the Help pull-down menu in the Connect GUI.

For detailed information about coreAssembler, refer to the coreAssembler User Guide.

If you want to build and verify only one component, coreConsultant is most likely the best tool for you
to use. For specific information about using coreConsultant to configure, synthesize, and verify your
DW_apb_uart component, refer to Appendix A on page 153.

The topics in this chapter are as follows:

1. “Setting up Your Environment” on page 22
2. “Overview of the Configuration and Integration Process” on page 22
3. “Start Connect” on page 24
4. “Check Your Environment” on page 25
5. “Add DW_apb_uart to the Subsystem” on page 26
6. “Configure DW_apb_uart” on page 29
7. “Complete Signal Connections” on page 30
8. “Generate Subsystem RTL” on page 30
9. “Create Gate-Level Netlist” on page 32

10. “Create Component GTECH Simulation Model” on page 35
11. “Verify Component” on page 37
12. “Verify the Subsystem” on page 40
13. “Create a Batch Script” on page 42
14. “Export the Subsystem” on page 43

22 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

Setting up Your Environment
DW_apb_uart is included with a DesignWare Synthesizable Components for AMBA 2 release; it is
assumed that you have already downloaded and installed the release. However, to download and install
the latest versions of required tools, refer to the DesignWare AMBA Synthesizable Components
Installation Guide.

You also need to set up your environment correctly using specific environment variables, such as
DESIGNWARE_HOME, VERA_HOME, PATH, and SYNOPSYS. If you are not familiar with these
requirements and the necessary licenses, refer to “Setting up Your Environment” in the DesignWare
AMBA Synthesizable Components Installation Guide.

Overview of the Configuration and Integration Process
Once you have correctly downloaded and installed a release of DesignWare AMBA synthesizable
components and then set up your environment, you can begin building your DesignWare AMBA
subsystem with Connect.

Figure 3 illustrates Connect’s usage flow from invoking the tool to creating a workspace to stepping
through the activities in the GUI. Table 3 on page 23 provides a description of the workspace directory
and subdirectories.

Figure 3: Connect Usage Flow

mydesign

export report sim src syn
header files
sample instantiation

verification file list

bin
mydesign.v

gate-level

synthesissynthesis constraints

stimulus
testbench

netlist

control files

Connect Workspace

Run Connect
% cd <working directory>

1

Create workspace2

components kb scratch

i_ahb

i_apb

i_wdt
synthesis netlist

synthesis
reports

% dw_connect

Use Connect to create, synthesize, and verify your subsystem3

…
…

January 20, 2006 Synopsys, Inc. 23

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

Table 3: Connect Workspace Directory Contents

Directory/Subdirectory Description

Directories containing files to be used after exiting Connect.

export Contains the files you will need once you exit Connect. These files will be
used to integrate the results from the completed source configuration and
synthesis activities into your larger system (outside Connect). An
index.html file in this directory describes all of the exported files. For
more details about the files in this directory, refer to “Export Directory” in
the DesignWare Connect User Guide.

sim/stimulus/component_name Contains the test stimulus files in Verilog and C.

sim/testbench/all Includes the subsystem’s testbench file, design_name_tb.v. subsystem
source file list, design_name.lst, and simulation execution script
run.scr.

src Includes the subsystem top-level RTL file, design_name.v.

Directories containing files not generally used after exiting Connect.

components Includes a directory for each DW AMBA Synthesizable IP instance
connected in the subsystem.

components/instance_name Contains the data for each IP component instance. This is the instance
name of the component used in the design. Each instance_name directory
is equivalent to a coreConsultant component workspace. See the IP
component’s databook for details of this directory structure.

kb Contains knowledge base information used by Connect. These are binary
files containing the state of the design.

report Contains all of the reports created by Connect during build, configuration,
test and synthesis phases. An index.html file in this directory links to many
of these generated reports.

scratch Contains temp files used during the Connect processes.

sim Includes simulation files for the subsystem. This directory is created when
you complete the Simulate Subsystem activity in uart.

sim/testbench/all/cov_results Includes the various coverage results of the verified subsystem

syn Contains synthesis files for the subsystem. This directory is created when
you complete all of the activities in the Create Gate-Level Netlist
(synthesis) activity group in Connect.

24 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

Start Connect
To invoke Connect:

1. In a UNIX shell, navigate to a directory where you plan to locate your component workspace.

2. Invoke the Connect tool:

% dw_connect

The welcome page is displayed, similar to the one below.

3. Click on “create a new AMBA subsystem now” link to create a new workspace. After you have
created a workspace, you can also continue working from the point you left off by using the “open
an existing AMBA subsystem” link to open it back up.

A “Create a New Workspace” message appears, which explains some of the terms used by
coreAssembler. Read this information and then click OK.

Activity List
pane

Activity View
pane

Console

Command Line
pane

pane

January 20, 2006 Synopsys, Inc. 25

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

4. In the resulting dialog box, specify the workspace name, workspace root directory, and design
name, or leave the defaults. To find out more about the fields in this dialog box, you can right-click
over the specific item to get What’s This help.

The following describes these items in more detail:

❍ Workspace name - the name of the Unix directory where the database containing all of your
design files will be kept.

❍ Workspace root directory - the name of the Unix directory that is the “parent” to your
workspace directory (Workspace name).

❍ Design name - the top-level design name that is used in the top-level RTL file.

Connect displays an HTML file that explains general design rules and address map specification
rules for Connect subsystems. Familiarize yourself with the information in this file so that you will
be familiar with the automatically-generated testbench that will result from this session. If you
later want to access this information again, use the Help > Connect Design Rules menu. When
you have finished, click OK.

At this point, Connect creates in the workspace an export directory that will eventually contain the
files you need once you exit Connect. You can use these files for your own chip-level synthesis
and simulation. A README file and an index.html file in this directory both describe all of the
exported files in this directory.

In the Connect GUI, you will see that the DW_ahb component is already displayed in the
schematic window and that the Add Subsystem Components activity is highlighted under the
Create RTL category in the Activity List on the left.

For more information about Connect, refer to the DesignWare Connect User Guide. For more
in-depth Connect tutorials, refer to the “Connect Tutorials” chapter of the DesignWare Connect
User Guide. For tables that list the contents of the export directory at each step of the Connect
process, refer to “Export Directory” in the DesignWare Connect User Guide.

Check Your Environment
Before you begin configuring your component, it is recommended that you check your environment to
ensure you have the latest tool versions installed and your environment variables set up correctly.

To check your environment, use the Help > Check Tool Environment menu path.

An HTML report is displayed in a separate dialog. This report lists the specific tools and versions
installed in your environment. It also displays errors when a specific tool is not installed or if you are
using an older version than you need.

Note
You do not have to be concerned if this tool reports errors regarding simulators that are not
used. Only concern yourself if you receive an error regarding your simulator of choice.
For more information about setting the appropriate environment variables for your
simulator, refer to “Setting up Your Environment” in the DesignWare AMBA Synthesizable
Components Installation Guide.

You will also see an error if your $DESIGNWARE_HOME environment variable has not been set up
correctly. When you are finished, click OK.

26 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

Add DW_apb_uart to the Subsystem
In a minimal subsystem using the DW_apb_uart component, you would also have an AHB bus, an
APB bus, and most likely a “dummy” AHB master. Therefore, the subsystem described in this chapter
contains the following components: DW_apb_uart, DW_ahb, DW_apb, and AHB Master. The last
component is one that you will export up and out of the design to be replaced by your real AHB Master,
such as a CPU, which you would probably add in your own environment later in the design process. At
least one exported AHB master interface is required in the subsystem if you intend to do a basic “ping
test” simulation.

Figure 4 illustrates the DW_apb_uart in a simple subsystem.

Figure 4: DW_apb_uart in Simple Subsystem

The following procedure steps you through the process of creating a simple subsystem with a
DW_apb_uart component.

1. Use the Schematic > Add New Component menu item to display the Add Component Instance to
Subsystem dialog; alternatively, you can right-click in the schematic window and choose Add
New Component from the popup menu or use the Insert key.

2. Choose the DW_apb component and click Apply. You will notice that the hresetn and hclk inputs
are automatically connected together, and that the AHB_Slave1 output of the DW_ahb is
connected to the AHB_Slave input of the DW_apb.

3. Now add the DW_apb_uart component using the Add Component Instance to Subsystem dialog.
Click OK. Notice that Connect automatically connects the presetn and pclk signals, and connects
the APB_Slave0 output of the DW_apb component to the APB_Slave input of the DW_apb_uart.

m

s

s

User’s System/Chip
DesignWare Connect

manually exported interfaces to non-DesignWare AMBA IP
automatically exported interfaces from DesignWare peripheral IP

non-DW AMBA IP
(custom AHB master)

DW_ahb

DW_apb_uart
Bridge

(DW_apb)

January 20, 2006 Synopsys, Inc. 27

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

4. Notice that the DW_ahb instance is red in the schematic view. Toggle over to the tree view by

clicking the toggle icon on the toolbar and expand the i_ahb component instance. The AHB

Master line in the Interface Connections says that it is missing a connection, and the i_ahb/Remap-
Pause line shows it as disconnected.

To resolve this, you are going to export an AHB master interface from the DW_ahb.

5. To export an AHB master interface, select the AHB Master line in the tree view, right-click, and
then select Export Interface as illustrated in the following figure.

The “Export Interface Instance from Subsystem” dialog opens. For this exercise, keep the default
naming and click OK.

6. You now have a rudimentary subsystem that includes the DW_apb_uart component. Next try to
complete the Add Subsystem Components activity by clicking the Apply button in the lower right
corner below the schematic. Alternatively, you can just click on the next activity (Configure
Components), and answer “yes” to the pop-up window.

28 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

An error message appears telling you that there is a problem because the remap/pause interface in
the DW_ahb is not connected. Notice that the DW_ahb component is still red, indicating that there
is some kind of problem. The Console pane at the bottom of the GUI gives you additional
information about the error, as illustrated in the following figure.

Note
These error messages are generated from TCL code and may seem verbose. In most cases,
the first part of the error message contains useful information, whereas the remainder of
the message can be ignored. If you want to obtain more information about a particular
error, you can issue the following command in the Command Line below the Console
pane:

% man error number

7. Because you do not need the remap/pause feature in this subsystem, you will set that interface as
“unused.” OK the error message and right-click on the i_ahb/Remap-Pause interface and choose
the Set Unused menu item. Notice that the DW_ahb is no longer red.

You can see in the following illustration the difference between how the tree view displays an
error and how it looks when the error is resolved.

Before After

January 20, 2006 Synopsys, Inc. 29

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

8. Click the Apply button again to complete the Add System Components activity. When a message
box asks you if you want to initialize the subsystem address map, click Yes. Automatic address
map creation is discussed in more detail in the next section “Configure DW_apb_uart” on page 29.

Connect creates the files described below in the export directory for this activity.

9. Connect displays a report for the subsystem, which includes a number of hyperlinks to sections
further down in the page for unconnected interfaces, subsystem components, exported interface
connections, component interface connections, and subsystem ports to be created. You should
always familiarize yourself with the information in all reports before going to any new activity.

Configure DW_apb_uart
This section steps you through the tasks that configure the component-level parameters (configuration
parameters) for DW_apb_uart in Connect. For this exercise, you will not configure any of the other
components in this example subsystem, but instead leave them with their default parameter values.

If you need help with any field in the Activity List pane, right-click on the field name and then
left-click on the What’s This box to get specific information for that item. Additionally, you can click
on the Help tab (lower-left corner of the Activity View pane) for each activity to activate the
coreAssembler online help.

1. Configure Components – The Configure Components activity is where you specify the basic
configuration of the DW_apb_uart; click on that item in the Activity List.

2. Click the DW_apb_uart item (also called i_uart) to display the Top Level Parameters window;
look through the defaults.

3. Because you clicked “Yes” when the dialog asked if you wanted to initialize the subsystem address
map at the completion of the Add Subsystems Components activity, look at the results.

a. Click on the DW_apb (i_apb) item, and then click on the “Address Map” item.

b. Notice that the APB start address is 0x00010000 and that the end address is 0x000103ff,
which is the same as the start and end addresses of the DW_apb_uart, listed as Slave 0. If you
had connected one or more APB slaves to the DW_apb component, then the start and end

New Contents of Export Directory after Add Subsystem Components

Directory or File Description

batch.tcl Batch script for recreating completed activities associated with subsystem
assembly. This file gets updated after the following activities are completed:

● Add Subsystem Components

● Complete Connections

● Simulate Subsystem

● Create Gate-Level Netlist

index.html HTML file containing descriptions of files created in export directory after the
Add Subsystem Components step.

README Text file containing descriptions of files created in the export directory after the
Add Subsystem Components step.

30 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

address of the DW_apb would have reflected the start address of Slave 0 and the end address
of the last slave. Similarly, you can view the automatically generated address map in the
DW_ahb component.

4. Click the Apply button to activate the configuration parameters. Connect creates no files in the
export directory for this activity.

When the configuration setup is complete, the Report tab is displayed, which gives you a list of
configuration reports for all the components in the subsystem. At minimum, click on the link to the
configuration report for DW_apb_uart. Look at any source files to which you have access (in
encrypted format if you have a DesignWare license, and unencrypted if you have a source license)
and look at all the parameters that have been set for this particular configuration.

Complete Signal Connections
You can use the Complete Connections activity to connect any pins that were not automatically
connected as part of an interface. Unconnected input pins can be connected to unconnected output pins,
tied off to a constant value, or exported from the subsystem (that is, connected to an automatically
created input port of the subsystem). Unconnected output pins can be connected to an existing input
pin, explicitly marked as unconnected (open), or exported from the subsystem.

In this exercise, you will leave everything in its default situation. If you want to learn more about
completing signal connections, refer to the “Complete Connections” section in the coreAssembler User
Guide, which you can access through the Help > coreAssembler Tool Help > User’s Guide menu
item. For now, do the following:

1. Complete Connections – Click on Complete Connections in the Activity List.

2. Look at the Manual Connect and Manual Disconnect tabs; leave the defaults and Apply the dialog.

3. Look through the Export Connections Out of Subsystem dialog and then click OK, leaving the
defaults.

Notice that there are hyperlinks to information regarding automatic connections (in a separate
HTML file) and sections further down in the file for other connections and unconnected subsystem
ports and component pins. Connect adds no new files to the export directory for this activity but
only updates the batch.tcl file.

Generate Subsystem RTL
You can create top-level code for the subsystem in either VHDL or Verilog using the Generate
Subsystem RTL task in the Activity List. In the dialog that appears in the Activity View pane, you
choose the output language.

1. Generate Subsystem RTL – Click on Generate Subsystem RTL in the Activity List.

New Contents of Export Directory after Complete Connections

Directory or File Description

batch.tcl Updated to include all activities completed to this point. You can use this script
to recreate the entire workspace up to this point in the Activity List.

January 20, 2006 Synopsys, Inc. 31

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

2. If you are using a Verilog simulator (such as VCS), choose the default Verilog language and Apply
the activity.

3. If you are using a VHDL simulator, click the button for VHDL as the output language and then
choose between std_logic or std_ulogic.

Note
This dialog only selects the HDL language for the top-level RTL for the subsystem. All
RTL written for the instantiated components in the subsystem are controlled by the
individual IP provider. For all DesignWare Synthesizable Components for AMBA 2, the
component RTL is written in Verilog.

4. Click Apply. Regardless of whether you use a Verilog or VHDL simulator, Connect creates both
Verilog and VHDL files in workspace/src and workspace/export directories. If you choose a
Verilog simulator, the VHDL files will default to std_logic. Connect creates the following files in
the export directory for this activity.

5. Familiarize yourself with the generated RTL files.

New Contents of Export Directory after Generate Subsystem RTL

Directory or File Description

batch.tcl No updates.

workspace.lst List of source files in proper analysis order for entire subsystem.

workspace_comp.vhd VHDL component declaration for subsystem.

workspace_inst.v Verilog Testbench template; example subsystem instantiation.

workspace_inst.vhd VHDL Testbench template; example subsystem instantiation.

workspace_params.h C subsystem configuration information.

workspace_params.v Verilog subsystem configuration information.

workspace_params.vhd VHDL subsystem configuration information.

32 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

Create Gate-Level Netlist
To run synthesis on the subsystem and create a gate-level netlist, step through the following tasks in the
Connect GUI. You need to click the check box next to each activity in order to access the specific
activity dialog. At any time, you can click on the Help tab for each activity to display more information.

1. Look at the tool installation root directories in the Tool Installation Roots dialog, which is accessed
from the toolbar menu through Edit > Tool Installation Roots, or by using the Tools button on the
toolbar. You can type values directly in the data fields, or use the buttons to locate the correct
directories. The tool choices are:

❍ Design Compiler (dc_shell) – Specifies the location for the root directory of the Design
Compiler installation, if different from the default location.

❍ Physical Compiler (psyn_shell) – Enables the Physical Compiler if you plan to use an
incremental physical synthesis strategy or if you plan to do RTL to place gates.

❍ Primetime (pt_shell) – Enables Primetime if you plan to implement budgeting or generate
timing models.

❍ Formality (fm_shell) – Enables Formality if you plan to formally verify the synthesized
gate-level implementation of the core.

❍ DC FPGA (fpga_shell) – Enables Design Compiler FPGA if your synthesis targets high-end
FPGA devices.

At a minimum for this exercise, dc_shell must have defined installation directories, and in order to
complete the optional formal verification in this chapter, you will also need fm_shell.

2. Specify Target Technology – Connect analyzes the target technology library and uses it to
generate a synthesis strategy that is optimized for your technology library. In the Design Compiler
window, a target and link library must be specified; otherwise, errors occur in Connect.

Under the Specify Target Technology category in the Activity List, the title in the tabs depends on
the compiler you chose in the previous step. Regardless, this screen provides fields for you to enter
the search path for the specific compiler, as well as target and link library paths. If necessary,
specify the search path for the tool you specified in the previous screen. Also, specify the path to
the target and link libraries. Click Apply and familiarize yourself with the resultant report, which
gives you the technology information.

3. Specify Clock(s) – In the Specify Clock(s) activity, look at the attributes associated with each of
the real and virtual clocks in your design. Click Apply and familiarize yourself with the resultant
report, which gives you clock information.

4. Specify Operating Conditions and Wire Loads – In the Specify Operating Conditions and Wire
Loads activity, look at the attributes relating to the chip environment. If you do not see a value
beside OperatingConditionsWorst, select an appropriate value from the drop-down list; if there is
no value for this attribute, you will get an error message. Click Apply and look at the report, which
gives the operating conditions and wireload information.

5. Specify Port Constraints – In the Specify Port Constraints activity, look at the attributes
associated with input delay, drive strength, DRC constraints, output delay, and load specifications.
Click Apply and look at the report, which gives the port constraint checks.

6. Specify Synthesis Methodology – In the Specify Synthesis Methodology activity, look at the
synthesis strategy attributes. Note that these attributes are typically set by the core developer and
are not required to be modified by the core integrator. If you want to add your own commands

January 20, 2006 Synopsys, Inc. 33

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

during a synthesis, you use the Advanced tab in order to provide path names to your auxiliary
scripts. Also, click on the Physical Synthesis tab to familiarize yourself with those options. Click
Apply and look at the report, which gives design information. For more information on adding
auxiliary scripts, refer to “Advanced Synthesis Methodology Attributes” in the coreAssembler
User Guide.

7. Specify Test Methodology – In the Specify Test Methodology activity, look at the scan test
attributes. Also click on the other tabs to familiarize yourself with auto-fix attributes, SoC test
wrapper attributes, test wrapper integration attributes, BIST attributes, and BIST testpoint insertion
attributes. Click Apply and look at the report, which gives design-for-test information.

8. Synthesize – Choose the Synthesize activity. Do the following:

a. Choose the Strategy tab.

b. Click the Options button beside DCTCL_opto_strategy and look through the strategy
parameters. For example, you can use the Gate Clocks During Elaboration check box in the
Clock Gating tab in order to add parameters that enable and control the use of clock gating.
Click OK when you are done. For more information on clock gating and other parameters for
synthesis strategies, refer to “DC(TCL)_opto_strategy” in the coreAssembler User Guide.

For FPGA synthesis, click the Options button and then select the FPGA Synthesis tab. It is
here where you specify the location of your FPGA device and speed grade, synthetic libraries
other than DesignWare Foundation libraries, implementation of DC-FPGA operators, and so
on. For more information about running synthesis for an FPGA device, refer to the
coreAssembler User Guide.

For Design for Test, click the Options button and then select the Design for Test tab. Here you
can specify whether to add the -scan option to the initial compile call (Test Read Compile)
and/or insert design for test circuitry (Insert Dft). For more information about include DFT in
your synthesis run, refer to the coreAssembler User Guide.

c. Choose the Options tab. Look at the values for the parameters listed below.

Field Name Description

Execution Options

Generate Scripts only? Values: Enable or Disable
Default Value: Disable
Description: Writes the run.scr script, but it is not run when you click
Apply. To run the script, go to the component workspace and run the
script.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through
LSF, through GRD, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for the run style options except
local. For remote, specify the hostname. For LSF and GRD, specify
bsub or qsub commands.

34 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

d. If it is not already set, choose the “local” Run Style option and keep the other default settings.

e. Look through the Licenses and Reports tabs, and ensure that you have all the licenses that are
required to run this synthesis session.

f. Click Apply in the Synthesize Activity pane to start synthesis from Connect. The current
status of the synthesis run is displayed in the main window. Click the Reload Page button if
you want to update the status in this screen.

9. Generate Test Vectors – This option allows you to generate ATPG test vectors with TetraMax.
For more information about this, refer to “Generating Test Vectors” in the coreAssembler User
Guide.

Checking Synthesis Status and Results
To check synthesis status and results, click the Report tab for the synthesis options; Connect displays a
dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your synthesis results
● The name of the host on which the synthesis is running
● The process ID (Job Id) of the synthesis
● The status of the synthesis job (running or done)

The Results dialog also enables you to kill the synthesis (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Summary of log files
● Synthesis stages that completed
● Summary of stage results

This information indicates whether the synthesis executed successfully, and lists the transactions that
occurred during the scenario(s). Thorough analysis of the scenario execution requires detailed analysis
of all synthesis log files and inspection of report summaries.

Parallel job CPU limit Values: user-defined; minimum value is 1
Default Value: 1
Description: Specifies number of parallel compile jobs that can be
run.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Skip reading
$HOME/.synopsys_dc.setup

Values: Enable or Disable
Default Value: Disable
Description: Forces tools not to read .synopsys_dc.setup file from
$HOME.

Field Name Description

January 20, 2006 Synopsys, Inc. 35

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

Synthesis Output Files
All the synthesis results and log files are created under the syn directory in your workspace. Two of the
files in the workspace/syn directory are:

● run.scr – Top-level synthesis script for the subsystem
● run.log – Synthesis log file

Your final netlist and report directories depend on the QoR effort that you chose for your synthesis
(default is medium):

● low – initial
● medium – incr1
● high – incr2

For more information about deliverables that are generated after synthesis is performed, refer to
“Database Description” on page 167.

Running Synthesis from Command Line
To run synthesis from the command line prompt for the files generated by Connect, enter the following
command:

% run.scr

This script resides in your workspace/syn directory.

Create Component GTECH Simulation Model
DesignWare AMBA Synthesizable IP components are delivered in encrypted format, rather than
source code, and every simulator besides VCS cannot read the encrypted source files. In order for these
simulators to read the encrypted files, you must either perform a GTECH conversion or purchase a
source license from Synopsys.

Note
The Synopsys VCS simulator reads the encrypted files directly and does not require a
GTECH conversion. All other supported simulators require a GTECH simulation model.
You need DesignWare and Design Compiler licenses to complete the GTECH generation
process. If you are a source license customer, then you do not have to generate a GTECH
simulation model, even if you are using a non-VCS simulator.

Also, it is not possible to perform a GTECH simulation with DC FPGA.

1. Create Component GTECH Simulation Model – To create a GTECH simulation model for the
DW_apb_uart component, click on the Generate GTECH Model (for i_uart) activity.

36 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

2. Look at the values for the parameters listed below.

Note
For GTECH Simulations Only. Due to the configurable nature of the component, some
ports in the testbench may not be needed for your chosen configuration. Warnings about
undriven nets may appear. These warnings are to be expected, and you can ignore them.
The verification result files show if the verification ran successfully.

3. Click Apply. Connect invokes Design Compiler to perform a low-effort compile (quickmap) of
your custom configuration using the Synopsys technology-independent GTECH library. After this
activity has completed, an e-mail similar to the following is sent to the specified user name (if you
enabled that option):

Activity: GenerateGtechModel
Workspace: workspace_path
Design: design_name
Started: Wed Jul 24 16:19:48 BST 2002
Finished: Wed Jul 24 16:21:42 BST 2002
Status: Completed
Results: workspace_path/components/i_uart/gtech/gtech.log

Field Name Description

Execution Options

Generate Scripts only? Values: Enable or Disable
Default Value: Disable
Description: Writes scripts that run the generation of the GTECH
simulation model, but they are not run when you click Apply. To run
these scripts, go to the gtech directory of the component workspace and
run the run.scr script.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through lsf,
through grd, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for run style options other than local.
For remote, specify the hostname. For lsf and grd, specify bsub or qsub
commands.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Synthesis Control

Ungroup Netlist after Compile Values: Enable or Disable
Default Value: Disable
Description: Ungroups the design to provide a non-hierarchical netlist.

January 20, 2006 Synopsys, Inc. 37

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

Your simulation model is contained in the DW_apb_uart.v output file that is written to
workspace/components/i_uart/gtech/qmap/db.

Verify Component
The Verify Component activity in Connect allows you to perform verification for an individual
component. For this exercise, you are just going to perform verification for the DW_apb_uart;
however, you typically would also perform verification for other components in your subsystem.

To verify DW_apb_uart, use Connect to complete the following steps:

1. Verify Component – To run verification for the DW_apb_uart component, click Setup and Run
Simulations (for i_uart) in the Verify Component activity.

2. Specify the various options for the Simulator.

a. In the Select Simulator area, click on the Simulator list item to view available simulators
(VCS is the default).

b. Specify an appropriate Verilog simulator from the drop-down menu.

c. For installation instructions and information about required tools and versions, refer to
“Setting up Your Environment” in the DesignWare AMBA Synthesizable Components
Installation Guide. For general information about the contents of the release, refer to the
DesignWare DW_apb_uart Release Notes.

d. In the Simulator Setup area of the Simulator pane, look at the parameters for the simulator
setup, as detailed in the following table.

Field Name Description

Root Directory of Cadence
Installation

The path to the top of the directory tree where the Cadence NC-Verilog
executable is found; coreConsultant automatically detects this path. The
NC-Verilog executables reside in the ./bin subdirectory.

MTI Include Directory The path to the include directory contained within your MTI simulator
installation area. A valid directory includes the veriuser.h file.

Vera Install Area
($VERA_HOME)

Path to your Vera installation. This parameter defaults to the value of your
VERA_HOME environment variable. Changes to this value are propagated
as $VERA_HOME in any simulation run.

Vera .vro file cache
directory

Cache directory used by Vera to store .vro files, which are generated when
building the testbench. Encrypted Vera source is compiled and stored in the
cache.

DW Foundation install area
($SYNOPSYS)

Path to your $SYNOPSYS/dw installation. This parameter defaults to the
value of your SYNOPSYS environment variable. Any change to this value
must be made from the Tool Installation Areas coreConsultant dialog box.

C Compiler for (Vera PLI) Values: gcc or cc
Default Value: gcc
Description: Invokes the specific C compiler to create a Vera PLI for your
chosen non-VCS simulator. Choose cc if you have the platform-native ANSI
C compiler installed. Choose gcc if you have the GNU C compiler installed.

38 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

e. In the Waves Setup area of the Simulator pane, look at the parameters for the waves setup, as
detailed below.

Note
For the Generate Waves File setting, enable the check box so that the simulation creates a
dump file that you can use later for debugging the simulation, if you want to do so.

3. Choose the View list choice.

In the View Selection area of the View pane, look at the choice of views of the design you can
simulate from the drop-down list:

❍ RTL – requires a source license or Synopsys VCS

❍ GTECH – requires that you have completed the Generate GTECH Model activity (refer to
page 35) only if you are using a non-VCS simulator and do not have a source license.

4. Choose the Execution Options list choice to set the following options:

Field Name Description

Generate waves file Values: Enable or Disabled
Default Value: Disabled
Description: Indicates whether a wave file should be created for debugging
with a wave file browser after simulation ends. Uses VPD file format for
VCS, and VCD format for the other supported simulators.

Depth of waves to be
recorded

Description: Enter the depth of the signal hierarchy for which to record
waves in the dump file. A depth of 0 indicates all signals in the hierarchy are
included in the wave file.

Field Name Description

Do Not Launch
Simulation

Values: Enable or Disable
Default Value: Disable
Description: Determines whether to execute the simulation or just generate the
simulation run script. If checked, coreConsultant generates, but does not execute,
the simulation run script. You can execute the script at a later time by directly
invoking the run script (workspace/sim/run.scr) from the UNIX command line or
by repeating the Verification activity with the Do Not Launch Simulation option
unselected.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through lsf, through
grd, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for run style other than local. For remote,
specify the hostname. For lsf and grd, specify bsub or qsub commands.

Send e-mail Values: current user’s name
Description: E-mail is sent to the specified user when the command script
completes or is terminated.

January 20, 2006 Synopsys, Inc. 39

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

5. Select Testbench and look at the options described below:

6. Click Apply to run the simulation.

When you click Apply, Connect performs the following actions:

❍ Sets up the DW_apb_uart verification environment to match your selected DW_apb_uart
configuration.

❍ Generates the simulation run script (run.scr) and writes it to your
workspace/components/i_uart/sim directory.

❍ Invokes the simulation run script, unless you enabled the Do Not Launch Simulation option.

The simulation run script, in turn, performs the following actions:

❍ Links the generated command files, and recompiles the testbench.
❍ Invokes your simulator to simulate the specified scenarios.
❍ Writes the simulation output files to your workspace/components/i_uart/sim/test_* directory.
❍ If an e-mail address is specified, sends the simulation completion information to that e-mail

address when the simulation is complete.

For an overview of the related tests, refer to Chapter 8, “Verification” on page 133.

Checking Simulation Status and Results
To check simulation status and results, click the Report tab for either the GTECH models or for the
simulation options; Connect displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your simulation results
● The name of the host on which the simulation is running
● The process ID (Job Id) of the simulation
● The status of the simulation job (running or done)

If you selected the “LSF/GRD” option for the Run Style, then the status of the simulation jobs (running
or complete) is incorrect. Once all the simulation jobs are submitted to the LSF/GRD queue, the status
would indicate “complete.” You should use “bjobs/qstatus” to see whether all the jobs are completed.

The Results dialog also enables you to kill the simulation (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Vera compile execution messages
● Simulation execution messages
● DW_apb_uart bus transactions

This information indicates whether the simulation executed successfully, and lists the DW_apb_uart
transactions that occurred during the scenario(s).

Thorough analysis of the scenario execution requires detailed analysis of all simulation output files and
inspection of simulation waveforms with a waveform viewer.

Field Name Description

Run test_uart Values: Enable or Disable
Default Value: Enable
Description: Tests functionalities of DW_apb_uart.

40 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

Applying Default Verification Attributes
To reset all DW_apb_uart verification attributes to their default values, use the Default button in the
Setup and Run Simulation activity under the Verification tab.

To examine default attribute values without resetting the attribute values in your current workspace,
create a new workspace; the new workspace has all the default attribute values. Alternatively, use the
Default button to reset the values, and then close your current workspace without saving it.

Verify the Subsystem
To verify the subsystem, use Connect to complete the following activities.

Formal Verification
You can run formal verification scripts using Synopsys Formality (fm_shell) to check two designs for
functional equivalence. You can check the gate-level design from a selected phase of a previously
executed synthesis strategy against either the RTL version of the design or the gate-level design from
another stage of synthesis.

To run formal verification scripts:

● Formal Verification – Choose Formal Verification under the Verify Component category and then
click Apply.

Simulate Subsystem
Specify the simulation for the subsystem by completing the Simulate Subsystem activity:

1. Simulate Subsystem – In the Simulator Setup tab, look at the parameters for the simulator setup,
as detailed in the following table.

Field Name Description

Control Language Values: Verilog or C
Default Value: Verilog
Description: The language used to control the testbench.

AHB/APB Monitors
Enabled

Values: Enable or Disable
Default Value: Enable
Description: Determines whether or not to activate the AHB/APB bus monitors.

SIO Monitors Enabled Values: Enable or Disable
Default Value: Enable
Description: Determines whether or not to activate the SIO monitors.

Simulator Values: Enable or Disable
Default Value: Enable
Description: Choice of simulator to invoke for the testbench.

MTI Include Path The path to the include directory contained within your ModelSim simulator
installation area. A valid directory includes the veriuser.h file.

Root Directory of
Cadence Installation

The path to the top of the directory tree where the Cadence NC-Verilog
executable is found; Connect automatically detects this path. The NC-Verilog
executables reside in the ./bin subdirectory.

January 20, 2006 Synopsys, Inc. 41

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

2. In the Execution Options tab, complete the settings below.

3. Choose the Testbench Definition tab to determine which slaves you want to be tested by which
master – in this case, there is only one slave and one master.

Generate waves file Values: Enable or Disable
Default Value: Disable
Description: Indicates whether a wave file should be created for debugging
with a wave file browser after simulation ends. Uses VPD file format for VCS,
and VCD format for the other supported simulators.

C Compiler for (Vera PLI) Values: gcc or cc
Default Value: gcc
Description: Invokes the specific C compiler to create a Vera PLI for your
chosen non-VCS simulator. Choose cc if you have the platform-native ANSI C
compiler installed. Choose gcc if you have the GNU C compiler installed.

Path for gcc Description: Path to gcc for compiling System C drivers when using C control
for the testbench.

Field Name Description

Execution Options

Generate Scripts
only?

Values: Enable or Disable
Default Value: Disable
Description: Writes scripts that run the generation of the GTECH simulation
model, but they are not run when you click Apply. To run these scripts, go to the
gtech directory of the component workspace and run the run.scr script.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through lsf, through
grd, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for run style options other than local. For
remote, specify the hostname. For lsf and grd, specify bsub or qsub commands.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Field Name Description

42 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

4. Click Apply to run the subsystem simulation. Connect creates no files in the export directory for
this activity.

Checking Subsystem Verification Status and Results
To check subsystem simulation status and results, click the Report tab. As for the component
simulation, Connect displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your simulation results
● The name of the host on which the simulation is running
● The process ID (Job Id) of the simulation
● The status of the simulation job (running or done)

The Results information includes:

● How many tests passed out of selected tests
● Link to testbench
● Waveforms
● Coverage results
● Testbench topology
● Connect design rules
● Log data
● Slave test status

Create a Batch Script
It is recommended that you create a batch file that contains information about the workspace,
parameters, attributes, and so on.

1. To do this, choose the File > Write Batch Script menu item and enter a location (other than your
working directory or where your workspace resides) and name for the file. Use the browse button
to navigate to the directory where you want this file to reside.

2. Then look at the contents to familiarize yourself with the information that you can get from this
file. You can use the batch script to reproduce the workspace.

Note
When you use this file, it deletes your workspace before it recreates it. So all manually
edited files will become deleted. Make sure to save any files you want to keep to a
different location.

New Contents of Export Directory after Verify Subsystem

Directory or File Description

No files added.

January 20, 2006 Synopsys, Inc. 43

DesignWare DW_apb_uart Databook Chapter 2: Building and Verifying a Subsystem

To use this batch script to recreate your subsystem, perform the following:

1. Make sure to run the batch.tcl script from a directory other than where your workspace resides.
2. In the Console at the bottom of the Connect GUI screen, enter the following:

% source batch.tcl

Export the Subsystem
You can export your subsystem for reuse by third parties by building a subsystem coreKit, or you can
create a subsystem template that exports your subsystem as a reconfigurable “box.” You need a
separate coreBuilder license for both of these activities. However, the scope of this tutorial does not
include exporting a coreKit. If you are interested in learning more about this, refer to the
coreAssembler User Guide.

44 Synopsys, Inc. January 20, 2006

Chapter 2: Building and Verifying a Subsystem DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 45

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

3
Functional Description

This chapter describes the functional operation of the DW_apb_uart. The topics are as follows:

● “UART (RS232) Serial Protocol” on page 45
● “IrDA 1.0 SIR Protocol” on page 47
● “FIFO Support” on page 48
● “Clock Support” on page 49
● “Interrupts” on page 51
● “Auto Flow Control” on page 51
● “Programmable THRE Interrupt” on page 54
● “Clock Gate Enable” on page 56
● “DMA Support” on page 58

UART (RS232) Serial Protocol
Because the serial communication between the DW_apb_uart and the selected device is asynchronous,
additional bits (start and stop) are added to the serial data to indicate the beginning and end. Utilizing
these bits allows two devices to be synchronized. This structure of serial data accompanied by start and
stop bits is referred to as a character, as shown in Figure 5.

Figure 5: Serial Data Format

An additional parity bit may be added to the serial character. This bit appears after the last data bit and
before the stop bit(s) in the character structure to provide the DW_apb_uart with the ability to perform
simple error checking on the received data.

The DW_apb_uart Line Control Register (“LCR” on page 100) is used to control the serial character
characteristics. The individual bits of the data word are sent after the start bit, starting with the
least-significant bit (LSB). These are followed by the optional parity bit, followed by the stop bit(s),
which can be 1, 1.5 or 2.

Serial Data Start

One Character

Stop

Bit Time

Data bits 5 - 8 Parity 1, 1.5, 2

46 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

All the bits in the transmission (with exception to the half stop bit when 1.5 stop bits are used) are
transmitted for exactly the same time duration. This is referred to as a Bit Period or Bit Time. One Bit
Time equals 16 baud clocks. To ensure stability on the line the receiver samples the serial input data at
approximately the mid point of the Bit Time once the start bit has been detected. As the exact number
of baud clocks that each bit was transmitted for is known, calculating the mid point for sampling is not
difficult, that is every 16 baud clocks after the mid point sample of the start bit. Figure 6 shows the
sampling points of the first couple of bits in a serial character.

Figure 6: Receiver Serial Data Sample Points

As part of the 16550 standard an optional baud clock reference output signal (baudout_n) is supplied to
provide timing information to receiving devices that require it. The baud rate of the DW_apb_uart is
controlled by the serial clock (sclk or pclk in a single clock implementation) and the Divisor Latch
Register (DLH and DLL). Figure 7 shows the timing diagram for the baudout_n output for different
divisor values.

Figure 7: Baud Clock Reference Timing Diagram

Serial Data In Start

8

Data Bit 0 (LSB) Data Bit 1

16 16

sclk

baudout_n (divisor of 1)

baudout_n (divisor of 2)

baudout_n (divisor of 3)

baudout_n (divisor > 3)

2 clock cycles (N−2) clock cycles

N (divisor)

January 20, 2006 Synopsys, Inc. 47

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

IrDA 1.0 SIR Protocol
The Infrared Data Association (IrDA) 1.0 Serial Infrared (SIR) mode supports bi-directional data
communications with remote devices using infrared radiation as the transmission medium. IrDA 1.0
SIR mode specifies a maximum baud rate of 115.2 Kbaud.

Attention
Information provided on IrDA SIR mode in this section assumes that the reader is fully
familiar with the IrDa Serial Infrared Physical Layer Specifications. This specification can
be obtained from the following website:

http://www.irda.org

The data format is similar to the standard serial (sout and sin) data format. Each data character is sent
serially, beginning with a start bit, followed by 8 data bits, and ending with at least one stop bit. Thus,
the number of data bits that can be sent is fixed. No parity information can be supplied and only one
stop bit is used while in this mode.

Trying to adjust the number of data bits sent or enable parity with the Line Control Register (LCR) has
no effect. When the DW_apb_uart is configured to support IrDA 1.0 SIR it can be enabled with Mode
Control Register (MCR) bit 6. When the DW_apb_uart is not configured to support IrDA SIR mode,
none of the logic is implemented and the mode cannot be activated, reducing total gate counts. When
SIR mode is enabled and active, serial data is transmitted and received on the sir_out_n and sir_in
ports, respectively.

Transmitting a single infrared pulse signals a logic zero, while a logic one is represented by not sending
a pulse. The width of each pulse is 3/16ths of a normal serial bit time. Thus, each new character begins
with an infrared pulse for the start bit. However, received data is inverted from transmitted data due to
the infrared pulses energizing the photo transistor base of the IrDA receiver, pulling its output low. This
inverted transistor output is then fed to the DW_apb_uart sir_in port, which then has correct UART
polarity. Figure 8 shows the timing diagram for the IrDA SIR data format in comparison to the standard
serial format.

Figure 8: IrDA SIR Data Format

As detailed in the IrDA 1.0 SIR, the DW_apb_uart can be configured to support a low-power reception
mode. When the DW_apb_uart is configured in this mode, the reception of SIR pulses of 1.41
microseconds (minimum pulse duration) is supported, as well as nominal 3/16 of a normal serial bit
time. Using this low-power reception mode requires the programming of the Low Power Divisor Latch
(LPDLL/LPDLH) registers.

sout start

data bits

stop

bit period

bit
3/16

sir_out_n

sir_in

sin start stop

period

http://www.irda.org

48 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

When IrDA SIR mode is enabled, the DW_apb_uart operation is similar to when the mode is disabled,
with one exception; data transfers can only occur in half-duplex fashion when IrDA SIR mode is
enabled. This is because the IrDA SIR physical layer specifies a minimum of 10ms delay between
transmission and reception. This 10ms delay must be generated by software.

FIFO Support
The DW_apb_uart can be configured to implement FIFOs (as shown in Figure 2 on page 15) to buffer
transmit and receive data. If FIFO support is not selected, then no FIFOs are implemented and only a
single receive data byte and transmit data byte can be stored at a time in the RBR and THR. This
implies a 16450-compatible mode of operation. In this mode most of the enhanced features are
unavailable.

In FIFO mode, the FIFOs can be selected to be either external customer-supplied FIFO RAMs or
internal DesignWare D-flip-flop based RAMs (DW_ram_r_w_s_dff). If the configured FIFO depth is
greater than 256, the FIFO memory selection is restricted to be external. In addition, selection of
internal memory restricts the Memory Read Port Type to D-flip-flop based, Synchronous read port
RAMs.

When external RAM support is chosen, either synchronous or asynchronous RAMs can be used.
Asynchronous RAM provides read data during the clock cycle that has the memory address and read
signals active, for sampling on the next rising clock edge. Synchronous single stage RAM registers the
data at the current address out and is not available until the next clock cycle (second rising clock edge).
Figure 9 shows the timing diagram for both asynchronous and synchronous RAMs.

Figure 9: Timing for RAM Reads

Similarly, you can use synchronous RAM for writes, which registers the data at the current address out.
Figure 10 shows the timing diagram for RAM writes.

pclk

tx_ram_rd_addr

tx_ram_re_n

tx_ram_out

tx_ram_out

(Asyn Read Port)

(Sync Read Port)

Addr1 Addr2

Data Data

Data Data

January 20, 2006 Synopsys, Inc. 49

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

Figure 10: Timing for RAM Writes

When FIFO support is selected, an optional programmable FIFO Access mode is available for test
purposes, which allows the receive FIFO to be written by the master and the transmit FIFO to be read
by the master. When FIFO Access mode is not selected, none of the corresponding logic is
implemented and the mode cannot be enabled, reducing overall gate counts. When FIFO Access mode
has been selected it can be enabled with the FIFO Access Register (FAR[0]). Once enabled, the control
portions of the transmit and receive FIFOs are reset and the FIFOs are treated as empty.

Data can be written to the transmit FIFO as normal; however no serial transmission occurs in this mode
(normal operation halted) and hence no data leave the FIFO. The data that has been written to the
transmit FIFO can be read back with the Transmit FIFO Read (TFR) register, which when read gives
the current data at the top of the transmit FIFO.

Similarly, data can be read from the receive FIFO as normal. Since the normal operation of the
DW_apb_uart is halted in this mode, data must be written to the receive FIFO so it may be read back.
Data is written to the receive FIFO with the Receive FIFO Write (RFW) register. The upper two bits of
the 10 bit register are used to write framing error and parity error detection information to the receive
FIFO. Setting bit RFW[9] to indicate a framing error and RFW[8] to indicate a parity error. Although
these bit can not be read back via the Receive Buffer Register they can be checked by reading the Line
Status Register and checking the corresponding bits when the data in question is at the top of the
receive FIFO.

Clock Support
The DW_apb_uart can be configured to have either one system clock (pclk) or two system clocks (pclk
and sclk). Having the second asynchronous serial clock (sclk) implemented accommodates accurate
serial baud rate settings, as well as APB bus interface requirements. When using a single system clock,
the system clock settings available for accurate baud rates are greatly restricted.

When a two clock design is chosen, a synchronization module is implemented (as shown in Figure 2 on
page 15) for synchronization of all control and data across the two system clock boundaries. The RTL
diagram for the data synchronization module is shown in Figure 11 on page 50. The data
synchronization module can have pending data capability. The timing diagram shown in Figure 12 on
page 50 shows this process.

The arrival of new source domain data is indicated by the assertion of start. Since data is now available
for synchronization the process is started and busy status is set. If start is asserted while busy and
pending data capability has been selected, the new data is stored. When no longer busy the
synchronization process starts on the stored pending data. Otherwise the busy status is removed when

pclk

tx_ram_wr_addr

tx_ram_we_n

tx_ram_in Data

Addr0

50 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

the current data has been synchronized to the destination domain and the process continues. If only one
clock is implemented, all synchronization logic is absent and signals are simply passed through this
module.

Figure 11: RTL Diagram of Data Synchronization Module

Figure 12: Timing Diagram for Data Synchronization Module

Pending
Data

Register

Delay
Register

data_in

Data
Available
Toggle

Register

Data
Register

data_out

Busy
Register

Pending
Register

Edge
Detection

Sync
Reg.

2
Level Sync.

Edge
Detection

1
0

start

Logic

finish

Data
Register

Sync
Reg.

1

Sync
Reg.

1
Level Sync.

Sync
Reg.

2

data_rdy

Acknowledge

Data Available
Toggle

Destination ClockSource Clock

Stores the
request for
new writes
while busy
so that
pending data
can be
sync’ed once
current data
sync’ing is
complete.

start

busy

pending

data_avail_togg

finish

January 20, 2006 Synopsys, Inc. 51

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

Full synchronization handshake takes place on all signals that are “data synchronized”. All signals that
are “level synchronized” are simply passed through two destination clock registers. Both
synchronization types incur additional data path latencies. However, this additional latency has no
negative affect on received or transmitted data, other than to limit the serial clock (sclk) to being no
faster than four-times the pclk clock for back-to-back serial communications with no idle assertion.

A serial clock faster than four-times the pclk signal does not leave enough time for a complete
incoming character to be received and pushed into the receiver FIFO. However, in most cases, the pclk
signal is faster than the serial clock and this should never be an issue. There is also slightly more time
required after initial serial control register programming, before serial data can be transmitted or
received.

The serial clock modules must have time to see new register values and reset their respective state
machines. This total time is guaranteed to be no more than eight clock cycles of the slower of the two
system clocks. Therefore, no data should be transmitted or received before this maximum time expires,
after initial configuration.

In systems where only one clock is implemented, there are no additional latencies.

Interrupts
The assertion of the DW_apb_uart interrupt output signal (intr) occurs whenever one of the several
prioritized interrupt types are enabled and active. The following interrupt types can be enabled with the
IER register:

● Receiver Error
● Receiver Data Available
● Character Timeout (in FIFO mode only)
● Transmitter Holding Register Empty at/below threshold (in Programmable THRE interrupt mode)
● Modem Status

These interrupt types are covered in more detail in Table 8 on page 97.

When an interrupt occurs the master accesses the IIR. See Table 7 on page 96 to determine the source
of the interrupt before dealing with it accordingly.

Auto Flow Control
The DW_apb_uart can be configured to have a 16750-compatible Auto RTS and Auto CTS serial data
flow control mode available. If FIFOs are not implemented, then this mode cannot be selected. When
Auto Flow Control is not selected, none of the corresponding logic is implemented and the mode
cannot be enabled, reducing overall gate counts. When Auto Flow Control mode has been selected it
can be enabled with the Modem Control Register (MCR[5]). Figure 13 on page 52 shows a block
diagram of the Auto Flow Control functionality.

52 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

Figure 13: Auto Flow Control Block Diagram

Auto RTS and Auto CTS are described as follows:

Auto RTS – Becomes active when the following occurs:

❍ Auto Flow Control is selected during configuration
❍ FIFOs are implemented
❍ RTS (MCR[1] bit and MCR[5]bit are both set)
❍ FIFOs are enabled (FCR[0]) bit is set)
❍ SIR mode is disabled (MCR[6] bit is not set)

When Auto RTS is enabled (active), the rts_n output is forced inactive (high) when the receiver
FIFO level reaches the threshold set by FCR[7:6]. When rts_n is connected to the cts_n input of
another UART device, the other UART stops sending serial data until the receiver FIFO has
available space (until it is completely empty).

The selectable receiver FIFO threshold values are: 1, ¼, ½, and “2 less than full”. Since one
additional character may be transmitted to the DW_apb_uart after rts_n has become inactive (due
to data already having entered the transmitter block in the other UART), setting the threshold to “2
less than full” allows maximum use of the FIFO with a safety zone of one character.

Receiver
FIFO

Receiver
(Serial

-to-
Parallel)

Threshold
Detection Auto RTS

Flow
Control

Transmit
FIFO

Transmitter
(Parallel

-to-
Serial)

Auto CTS
Flow

Control

Auto CTS
Flow

Control

Receiver
(Serial

-to-
Parallel)

Auto RTS
Flow

Control

Receiver
FIFO

enable

Transmitter
(Parallel

-to-
Serial)

enable

soutsin

cts_nrts_n

sinsout

rts_ncts_n

cts

rts

DW_apb_uart 2

rts cts

DW_apb_uart 1

Transmit
FIFO

Threshold
Detection

January 20, 2006 Synopsys, Inc. 53

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

Once the receiver FIFO becomes completely empty by reading the Receiver Buffer Register
(RBR), rts_n again becomes active (low), signalling the other UART to continue sending data.

It is important to note that even if everything else is selected and the correct MCR bits are set, if
the FIFOs are disabled through FCR[0] or the UART is in SIR mode (MCR[6] is set to one), Auto
Flow Control is also disabled. When Auto RTS is not implemented or disabled, rts_n is controlled
solely by MCR[1]. Figure 14 shows a timing diagram of Auto RTS operation.

Figure 14: Auto RTS Timing

Auto CTS – becomes active when the following occurs:

❍ Auto Flow Control is selected during configuration
❍ FIFOs are implemented
❍ AFCE (MCR[5] bit is set)
❍ FIFOs are enabled through FIFO Control Register FCR[0] bit
❍ SIR mode is disabled (MCR[6] bit is not set)

When Auto CTS is enabled (active), the DW_apb_uart transmitter is disabled whenever the cts_n
input becomes inactive (high). This prevents overflowing the FIFO of the receiving UART.

If the cts_n input is not inactivated before the middle of the last stop bit, another character is
transmitted before the transmitter is disabled. While the transmitter is disabled, the transmitter
FIFO can still be written to, and even overflowed.

Therefore, when using this mode, the following happens:

● The UART status register can be read to check if the transmit FIFO is full (USR[1] set to zero),

● The current FIFO level can be read via the TFL register, or

● The Programmable THRE Interrupt mode must be enabled to access the “FIFO full” status via the
Line Status Register (LSR).

When using the “FIFO full” status, software can poll this before each write to the Transmitter FIFO.
See “Programmable THRE Interrupt” on page 54 for details. When the cts_n input becomes active
(low) again, transmission resumes. It is important to note that even if everything else is selected, if the

sin start Character T stop start Character T+1 stop

rts_n

RX FIFO Read 1 2 3 T T+1

T = Receiver FIFO Threshold Value

was received because rts_n was not detected before next
character entered the sending-UART’s transmitter

This character

54 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

FIFOs are disabled via FCR[0], Auto Flow Control is also disabled. When Auto CTS is not
implemented or disabled, the transmitter is unaffected by cts_n. A Timing Diagram showing Auto CTS
operation can be seen in Figure 15.

Figure 15: Auto CTS Timing

Programmable THRE Interrupt
The DW_apb_uart can be configured to have a Programmable THRE Interrupt mode available to
increase system performance. If FIFOs are not implemented, then this mode cannot be selected. When
Programmable THRE Interrupt mode is not selected, none of the logic is implemented and the mode
cannot be enabled, reducing the overall gate counts.

When Programmable THRE Interrupt mode is selected it can be enabled via the Interrupt Enable
Register (IER[7]). When FIFOs and the THRE Mode are implemented and enabled, THRE Interrupts
(when also enabled) and dma_tx_req_n are active at, and below, a programmed transmitter FIFO empty
threshold level, as opposed to empty, as shown in the flowchart in Figure 16 on page 55.

sout start Data Bits stop

cts_n

start Data Bits stop start Data Bits stop

Disabled

January 20, 2006 Synopsys, Inc. 55

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

Figure 16: Flowchart of Interrupt Generation for Programmable THRE Interrupt Mode

This threshold level is programmed into FCR[5:4]. The available empty thresholds are: empty, 2, ¼ and
½. See “FCR” on page 98for threshold setting details. Selection of the best threshold value depends on
the system's ability to begin a new transmission sequence in a timely manner. However, one of these
thresholds should prove optimum in increasing system performance by preventing the transmitter FIFO
from running empty.

In addition to the interrupt change, Line Status Register (LSR[5]) also switches function from
indicating transmitter FIFO empty, to FIFO full. This allows software to fill the FIFO each transmit
sequence by polling LSR[5] before writing another character. The flow then becomes, “fill transmitter
FIFO whenever an interrupt occurs and there is data to transmit”, instead of waiting until the FIFO is
completely empty. Waiting until the FIFO is empty causes a performance hit whenever the system is
too busy to respond immediately. Further system efficiency is achieved when this mode is enabled in
combination with Auto Flow Control.

CLEAR INTR

FIFO LEVEL > TX
Empty Trigger?

THRE Interrupt
Enabled?

SET INTR

FIFO LEVEL > TX
Empty Trigger?

N

N

N

Y

Y

Y

Under the condition that
there are no other pending
interrupts, the interrupt
signal (intr) is asserted

For the THRE interrupt to be
controlled as shown here, the
following must be true:
- FIFO_MODE != NONE
- THRE_MODE == Enabled
- FIFOs enabled (FCR[0] == 1)
- THRE mode enabled (IER[7] == 1)

56 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

Even if everything else is selected and enabled, if the FIFOs are disabled via FCR[0], the
Programmable THRE Interrupt mode is also disabled. When not selected or disabled, THRE interrupts
and LSR[5] function normally (both reflecting an empty THR or FIFO). The flowchart of THRE
interrupt generation when not in programmable THRE interrupt mode is shown in Figure 17.

Figure 17: Flowchart of Interrupt generation when not in Programmable THRE Interrupt
Mode

Clock Gate Enable
The DW_apb_uart can be configured to have a clock gate enable output. When the clock enable option
is not selected, none of the logic is implemented, reducing the overall gate counts.

When the clock gate enable option is selected the clock gate enable signal(s) (uart_lp_req_pclk for
single clock implementations or uart_lp_req_pclk and uart_lp_req_sclk for two clock implementations)
is used to indicate that the transmit and receive pipeline is clear (no data), no activity has occurred, and
the modem control input signals have not changed in more than one character time (the time taken to
TX/RX a character) so clocks may be gated. (A character is made up of: start bit + data bits + parity
(optional) + stop bit(s)). It is an indication that the UART is inactive, so clocks may be gated to put the

CLEAR INTR

TX FIFO EMPTY?

THRE Interrupt
Enabled?

SET INTR

TX FIFO Not Empty
or IIR Read?

Y

N

N

Y

Y

N

Under the condition that
there are no other pending
interrupts, the interrupt
signal (intr) is asserted

For the THRE interrupt to be
controlled as shown here, one or
more of the following must be true:
- FIFO_MODE == NONE
- THRE_MODE == Disabled
- FIFOs disabled (FCR[0] == 0)
- THRE mode disabled (IER[7] == 0)

January 20, 2006 Synopsys, Inc. 57

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

device in a low power (lp) mode. Therefore, the following must be true for at least one character time
for the assertion of the clock gate enable signal(s) to occur:

● No data in the RBR (in non-FIFO mode) or the RX FIFO is empty (in FIFO mode)

● No data in the THR (in non-FIFO mode) or the TX FIFO is empty (in FIFO mode)

● sin/sir_in and sout/sir_out_n are inactive (sin/sir_in are kept high and sout is high or sir_out_n is
low) indicating no activity

● No change on the modem control input signals

Note, the clock gate enable assertion does not occur in the following modes of operation:

● Loopback mode

● FIFO access mode

● When transmitting a break

For example, assume a DW_apb_uart that is configured to have a single clock (pclk) and is
programmed to transmit and receive characters of 7 bits (1 start bit, 5 data bits and 1 stop bit) and the
baud clock divisor is set to 1. Therefore, the uart_lp_req_pclk signal is asserted if the transmit and
receive pipeline is clear, no activity has occurred and the modem control input signals have not
changed for 112 (7 × 16) pclk cycles. Figure 18 illustrates this example.

Figure 18: Clock Gate Enable Timing

When either of the signals sin or sir_in goes low, or a write to any of the registers is performed, or the
modem control input signals have changed when the DW_apb_uart is in low power (sleep) mode, the
clock gate enable signal(s) are de-asserted (as the assertion criteria are no longer met) so that the
clock(s) is resumed. The time taken for the clock(s) to resume is important in the prevention of receive
data synchronization problems. This is due to the fact that the DW_apb_uart RX block samples at the
mid-point of each bit period (after approximately 8 baud clocks) in UART (RS323) mode and then
every 16 baud clocks after that for a baud divisor of 1 that is 16 sclks (which for a single clock
implementation is 16 pclks). Thus, if 8 or more sclk periods pass before the serial clock starts up again,
the UART may get out of sync with the serial data it is receiving. That is, the receiver may sample into
the second bit period and if it is still zero, think this is the start bit and so on. Therefore, to avoid this
problem the clock should be resumed within 5 clock periods of the baud clock, which is the same as
sclk if the baud divisor is set to one. This is worst case. If the divisor is greater, it gives a greater

pclk

sin

baud_clk_cnt

uart_lp_req

1 2

sout

16
cycles

busy (FSR[0])

Internal 110 111 0 10

Stop

58 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

number of sclk cycles available before the clock must resume. This means a sample point at the 13
baud clock (at the latest) out of the 16 that is transmitted for each bit period of the character in non-SIR
mode.

Figure 19 shows the timing diagram that illustrates the previous scenario. This problem is magnified in
SIR mode as the pulse width is only 3/16 of a bit period (3 baud clocks, which for a divisor of 1 is 3
sclks). Hence, it could be missed completely. The clocks must resume before 3 baud clock periods
elapse. If the first character received while in sleep mode is used purely for wake up reasons and the
actual character value is unimportant, this may not be a problem at all.

Figure 19: Resuming Clock(s) After Low Power Mode Timing

When the DW_apb_uart is configured to have two clocks, if the timing of the received signal is not
affected by the synchronization problem, then the minimum time to receive a character, if the baud
divisor is 1, is 112 sclks (1 start bit + 5 data bits + 1 stop bit = 7 × 16 =112). Therefore the pclk must be
available before 112 sclk cycles pass so that the received character can be synchronized over to the pclk
domain and stored in the RBR (in non-FIFO mode) or the RX FIFO (in FIFO mode).

DMA Support
The DW_apb_uart supports DMA signalling with the use of two output signals (dma_tx_req_n and
dma_rx_req_n) to indicate when data is ready to be read or when the transmit FIFO is empty. The
DW_apb_uart uses two DMA channels, one for the transmit data and one for the receive data. There
are two DMA modes: mode 0 and mode 1, controllable via bit 3 of the FIFO Control Register (only
DMA mode 0 is available when the FIFOs are not implemented or disabled).

DMA mode 0 supports single DMA data transfers at a time. In mode 0, the dma_tx_req_n signal goes
active low under the following conditions:

● When the Transmitter Holding Register is empty in non-FIFO mode

● When the transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode
disabled

● When the transmitter FIFO is at or below the programmed threshold with Programmable THRE
interrupt mode enabled

It goes inactive under the following conditions:

● When a single character has been written into the Transmitter Holding Register or transmitter
FIFO with Programmable THRE interrupt mode disabled

● When the transmitter FIFO is above the threshold with Programmable THRE interrupt mode
enabled.

bclk (= sclk

sin

uart_lp_req

clock(s) resume after

when div. = 1)

midpoint
actual sample

point
latest sample

point2 bclk periods

January 20, 2006 Synopsys, Inc. 59

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

The dma_rx_req_n signal goes active-low when there is a single character available in the Receiver
FIFO or the Receive Buffer Register and it goes inactive when the Receive Buffer Register or Receiver
FIFO are empty, depending on FIFO mode.

DMA mode 1 supports multi-DMA data transfers, where multiple transfers are made continuously until
the receiver FIFO has been emptied or the transmit FIFO has been filled. In mode 1 the dma_tx_req_n
signal is asserted under the following conditions:

● When the transmitter FIFO is empty with Programmable THRE interrupt mode disabled

● When the transmitter FIFO is at or below the programmed threshold with Programmable THRE
interrupt mode enabled.

The dma_tx_req_n signal is de-asserted when the transmitter FIFO is completely full. The
dma_rx_req_n signal is asserted when the Receiver FIFO is at or above the programmed trigger level,
or a character timeout has occurred (that is, the conditions for a character timeout have been met over
the required duration and does not refer to a character timeout interrupt, hence ERBFI does not need to
be set to one for this to occur), and is de-asserted when the receiver FIFO becomes empty.

The DW_apb_uart can also be configured to have additional DMA interface signals if required for the
DMA controller of choice (i.e. DW_ahb_dmac). When selected to have the additional DMA signals the
assertion of the fixed DMA signals (dma_tx_req_n and dma_rx_req_n) is similar to what was detailed
in the above DMA modes. That is, the dma_tx_req_n signal is asserted under the following conditions:

● When the Transmitter Holding Register is empty in non-FIFO mode

● When the transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode
disabled

● When the transmitter FIFO is at, or below the programmed threshold with Programmable THRE
interrupt mode enabled.

The dma_rx_req_n signal is asserted under the following conditions:

● When there is a single character available in the Receive Buffer Register in non-FIFO mode

● When the Receiver FIFO is at or above the programmed trigger level in FIFO mode

With the presence of the additional handshaking signals the UART does not have to rely on internal
status and level values to recognize the completion of a request and hence remove the request. Instead,
the de-assertion of the DMA transmit and receive request is controlled by the assertion of the DMA
transmit and receive acknowledge respectively.

When the UART is configured to have the additional DMA signals, the data flow (transfer lengths)
responsibility falls on the DMA (DW_ahb_dmac) and is controlled by the programmed burst
transaction lengths. Thus, there is no need for DMA modes and programming the FCR[3] has no effect.

The extra handshaking signals are explained in the DMA flow below for a DW_apb_uart that is
configured with FIFOs and Programmable THRE interrupt mode.

As a block flow control device, the DMA Controller is programmed by the processor with the number
of data items (block size) that are to be transmitted or received by the DW_apb_uart; this is
programmed into the BLOCK_TS field of the CTLx register.

60 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

The block is broken into a number of transactions, each initiated by a request from the DW_apb_uart.
The DMA Controller must also be programmed with the number of data items (in this case,
DW_apb_uart FIFO entries) to be transferred for each DMA request. This is also known as the burst
transaction length, and is programmed into the SRC_MSIZE/DEST_MSIZE fields of the
DW_ahb_dmac CTLx register for source and destination, respectively.

Figure 20 on page 60 shows a single block transfer, where the block size programmed into the DMA
Controller is 12 and the burst transaction length is set to 4. In this case, the block size is a multiple of
the burst transaction length. Therefore, the DMA block transfer consists of a series of burst
transactions. If the DW_apb_uart makes a transmit request to this channel, four data items are written
to the DW_apb_uart transmit FIFO. Similarly, if the DW_apb_uart makes a receive request to this
channel, four data items are read from the DW_apb_uart receive FIFO. Three separate requests must be
made to this DMA channel before all 12 data items are written or read.

Note
The source and destination transfer width settings in the DW_ahb_dmac –
DMA.CTLx.SRC_TR_WIDTH and DMA.CTLx.DEST_TR_WIDTH – should be set to
3’b000 because the DW_apb_uart FIFOs are 8 bits wide.

Figure 20: Breakdown of DMA Transfer into Burst Transactions

DMA Burst DMA Burst DMA Burst

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

Transaction 1 Transaction 2 Transaction 3

12 Data Items

DMA
Multi-block Transfer

Level

12 Data Items

Block Size : DMA.CTLx.BLOCK_TS=12
Number of data items per source burst transaction : DMA.CTLx.SRC_MSIZE = 4
For a FIFO depth of 16: UART.FCR[7:6] = 01 = FIFO 1/4 full = DMA.CTLx.SRC_MSIZE

(for more information, refer to discussion on page 64)

January 20, 2006 Synopsys, Inc. 61

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

When the block size programmed into the DMA Controller is not a multiple of the burst transaction
length, as shown in Figure 21, a series of burst transactions followed by single transactions are needed
to complete the block transfer.

Figure 21: Breakdown of DMA Transfer into Single and Burst Transactions

Transmit Watermark Level and Transmit FIFO Underflow
During DW_apb_uart serial transfers, transmit FIFO requests are made to the DW_ahb_dmac
whenever the number of entries in the transmit FIFO is less than or equal to the decoded level of the
Transmit Empty Trigger (TET) of the FCR register (bits 5:4); this is known as the watermark level. The
DW_ahb_dmac responds by writing a burst of data to the transmit FIFO buffer, of length
CTLx.DEST_MSIZE.

Data should be fetched from the DMA often enough for the transmit FIFO to perform serial transfers
continuously; that is, when the FIFO begins to empty another DMA request should be triggered.
Otherwise the FIFO runs out of data (underflow). To prevent this condition, you must set the
watermark level correctly.

Choosing the Transmit Watermark Level
Consider the example where the assumption is made:

DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - UART.FCR[5:4]

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the
Transmit FIFO. Consider two different watermark level settings.

15 Data Items

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

DMA Burst DMA SingleDMA SingleDMA Single
Transaction 1

DMA Burst
Transaction2

DMA Burst
Transaction 3

1 Data Item 1 Data Item 1 Data Item

Transaction 1 Transaction 2 Transaction 3

15 Data Items

DMA
Multi-Block Transfer

Level

Block Size : DMA.CTLx.BLOCK_TS=15
Number of data items per burst transaction : DMA.CTLx.DEST_MSIZE = 4
For a FIFO depth of 16: UART.FCR[5:4] = 10 =FIFO 1/4 full = 4 = DMA.CTLx.DEST_MSIZE

(for more information, refer to discussion on page 63)

62 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

Case 1: FCR[5:4] = 01, which decodes to 2

Figure 22: Case 1 Watermark Levels

Transmit FIFO watermark level = decoded level of UART.FCR[5:4] = 2
DMA.CTLx.DEST_MSIZE = FIFO_MODE − UART.FCR[5:4] = 14
UART transmit FIFO_MODE = 16
DMA.CTLx.BLOCK_TS = 56

Therefore, the number of burst transactions needed equals the block size divided by the number of data
items per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 56/14 = 4

The number of burst transactions in the DMA block transfer is 4. But the watermark level, decoded
level of UART.FCR[5:4], is quite low. Therefore, the probability of an UART underflow is high where
the UART serial transmit line needs to transmit data, but where there is no data left in the transmit
FIFO. This occurs because the DMA has not had time to service the DMA request before the transmit
FIFO becomes empty.

Case 2: FCR[5:4] = 11, which equates to FIFO 1/2 full (decodes to 8)

Figure 23: Case 2 Watermark Levels

Transmit FIFO watermark level = decoded level of UART.FCR[5:4] = 8
DMA.CTLx.DEST_MSIZE = FIFO_MODE - UART.FCR[5:4] = 8
UART transmit FIFO_MODE = 16
DMA.CTLx.BLOCK_TS = 56

Number of burst transactions in Block:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 56/8 = 7

In this block transfer, there are 7 destination burst transactions in a DMA block transfer. But the
watermark level, decoded level of UART.FCR[5:4], is high. Therefore, the probability of an UART
underflow is low because the DMA controller has plenty of time to service the destination burst
transaction request before the UART transmit FIFO becomes empty.

FIFO_MODE = 16

UART.FCR[5:4] = 01

FIFO_MODE − decoded level

FULL

EMPTY

UART Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

of UART.FCR[5:4] = 14

FIFO_MODE = 16 UART.FCR[5:4] = 8

FIFO_MODE − decoded level

FULL

EMPTY

UART Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

of UART.FCR[5:4] = 8

January 20, 2006 Synopsys, Inc. 63

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

Thus, the second case has a lower probability of underflow at the expense of more burst transactions
per block. This provides a potentially greater amount of AMBA bursts per block and worse bus
utilization than the former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block,
while at the same time keeping the probability of an underflow condition to an acceptable level. In
practice, this is a function of the ratio of the rate at which the UART transmits data to the rate at which
the DMA can respond to destination burst requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the
DMA master interface to the highest priority master in the AMBA layer, increases the rate at which the
DMA controller can respond to burst transaction requests. This in turn allows the user to decrease the
watermark level, which improves bus utilization without compromising the probability of an underflow
occurring.

Selecting DEST_MSIZE and Transmit FIFO Overflow
As can be seen from Figure 23 on page 62, programming DMA.CTLx.DEST_MSIZE to a value greater
than the watermark level that triggers the DMA request may cause overflow when there is not enough
space in the UART transmit FIFO to service the destination burst request. Therefore, the following
equation must be adhered to in order to avoid overflow:

DMA.CTLx.DEST_MSIZE <= UART.FIFO_DEPTH − decoded level of UART.FCR[5:4] (1)

In topic “Case 2: FCR[5:4] = 11, which equates to FIFO 1/2 full (decodes to 8)”, the amount of space in
the transmit FIFO at the time the burst request is made is equal to the destination burst length,
DMA.CTLx.DEST_MSIZE. Thus, the transmit FIFO may be full, but not overflowed, at the
completion of the burst transaction.

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that
triggers a transmit DMA request; that is:

DMA.CTLx.DEST_MSIZE = UART.FIFO_DEPTH − decoded level of UART.FCR[5:4] (2)

This is the setting used in Figure 21 on page 61.

Adhering to equation (2) reduces the number of DMA bursts needed for a block transfer, and this in
turn improves AMBA bus utilization.

Note
The transmit FIFO is not full at the end of a DMA burst transfer if the UART has
successfully transmitted one data item or more on the UART serial transmit line during the
transfer.

Receive Watermark Level and Receive FIFO Overflow
During DW_apb_uart serial transfers, receive FIFO requests are made to the DW_ahb_dmac whenever
the number of entries in the receive FIFO is at or above the decoded level of Receiver Trigger (RT) of
the FCR[7:6]. This is known as the watermark level. The DW_ahb_dmac responds by writing a burst of
data to the transmit FIFO buffer of length CTLx.SRC_MSIZE.

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers
continuously; that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the
FIFO fills with data (overflow). To prevent this condition, you must correctly set the watermark level.

64 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

Choosing the Receive Watermark Level
Similar to choosing the transmit watermark level described earlier, the receive watermark level,
decoded level of FCR[7:6], should be set to minimize the probability of overflow. It is a trade-off
between the number of DMA burst transactions required per block versus the probability of an
overflow occurring.

Selecting SRC_MSIZE and Receive FIFO Underflow
As can be seen in Figure 24, programming a source burst transaction length greater than the watermark
level may cause underflow when there is not enough data to service the source burst request. Therefore,
the following equation must be adhered to avoid underflow:

DMA.CTLx.SRC_MSIZE <= decoded level of FCR[7:6] (4)

If the number of data items in the receive FIFO is equal to the source burst length at the time the burst
request is made – DMA.CTLx.SRC_MSIZE – the receive FIFO may be emptied, but not underflowed,
at the completion of the burst transaction. For optimal operation, DMA.CTLx.SRC_MSIZE should be
set at the watermark level; that is:

DMA.CTLx.SRC_MSIZE = decoded level of FCR[7:6] (5)

Adhering to equation (5) reduces the number of DMA bursts in a block transfer, and this in turn can
improve AMBA bus utilization.

Note
The receive FIFO is not empty at the end of the source burst transaction if the UART has
successfully received one data item or more on the UART serial receive line during the
burst.

Figure 24: UART Receive FIFO

Handshaking Interface Operation
dma_tx_req_n, dma_rx_req_n – The request signals for source and destination, dma_tx_req_n and
dma_rx_req_n, are activated when their corresponding FIFOs reach the watermark levels as discussed
earlier.

The DW_ahb_dmac uses edge detection of the dma_tx_req_n signal/dma_rx_req_n to identify a
request on the channel. Upon reception of the dma_tx_ack_n/dma_rx_ack_n signal from the
DW_ahb_dmac to indicate the burst transaction is complete, the DW_apb_uart de-asserts the burst
request signals, dma_tx_req_n/dma_rx_req_n, until dma_tx_ack_n/dma_rx_ack_n is de-asserted by
the DW_ahb_dmac.

UART.decoded level FULL

EMPTY

UART Receive FIFO

DMA
Controller

Data In

Data Out

Receive FIFO
Watermark level

of FCR[7:6]

January 20, 2006 Synopsys, Inc. 65

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

When the DW_apb_uart samples that dma_tx_ack_n/dma_rx_ack_n is de-asserted, it can re-assert the
dma_tx_req_n/dma_rx_req_n of the request line if their corresponding FIFOs exceed their watermark
levels (back-to-back burst transaction). If this is not the case, the DMA request lines remain
de-asserted. Figure 25 on page 65 shows a timing diagram of a burst transaction where pclk = hclk.
Figure 26 shows two back-to-back burst transactions where the hclk frequency is twice the pclk
frequency.

The handshaking loop is as follows:

1. dma_tx_req_n/dma_rx_req_n asserted by DW_apb_uart

2. dma_tx_ack_n/dma_rx_ack_n asserted by DW_ahb_dmac

3. dma_tx_req_n/dma_rx_req_n de-asserted by DW_apb_uart

4. dma_tx_ack_n/dma_rx_ack_n de-asserted by DW_ahb_dmac

5. dma_tx_req_n/dma_rx_req_n re-asserted by DW_apb_uart, if back-to-back transaction is required

Note
The burst transaction request signals, dma_tx_req_n and dma_rx_req_n, are generated in
the DW_apb_uart off pclk and sampled in the DW_ahb_dmac by hclk. The acknowledge
signals, dma_tx_ack_n and dma_rx_ack_n, are generated in the DW_ahb_dmac off hclk
and sampled in the DW_apb_uart of pclk. The handshaking mechanism between the
DW_ahb_dmac and the DW_apb_uart supports quasi-synchronous clocks; that is, hclk
and pclk must be phase-aligned, and the hclk frequency must be a multiple of the pclk
frequency.

Figure 25: Burst Transaction – pclk = hclk

Figure 26: Back-to-Back Burst Transactions – hclk = 2*pclk

burst transaction request

burst transaction complete

pclk

hclk

dma_tx_req_n

dma_tx_ack_n

dma_tx_single_n not sampled by the DW_ahb_dmac for burst transactions

burst transaction request

burst transaction complete

burst transaction request

burst transaction complete

hclk

pclk

dma_rx_req_n

dma_rx_ack_n

dma_rx_single_n not sampled by the DW_ahb_dmac for burst transactions

66 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

Note the following the following:

1. The burst request lines, dma_tx_req_n/dma_rx_req_n, once asserted remain asserted until their
corresponding dma_tx_ack_n/dma_rx_ack_n signal is received even if the respective FIFOs drop
below their watermark levels during the burst transaction.

2. The dma_tx_req_n/dma_rx_req_n signals are de-asserted when their corresponding
dma_tx_ack_n/dma_rx_ack_n signals are asserted, even if the respective FIFOs exceed their
watermark levels.

dma_tx_single_n, dma_rx_single_n – The dma_tx_single_n signal is a status signal, and is asserted
when there is at least one free entry in the transmit FIFO, and cleared when the transmit FIFO is full.
The dma_rx_single_n signal is a status signal, and is asserted when there is at least one valid data entry
in the receive FIFO, and is cleared when the receive FIFO is empty.

These signals are needed by only the DW_ahb_dmac for the case where the block size,
CTLx.BLOCK_TS, that is programmed into the DW_ahb_dmac is not a multiple of the burst
transaction length, CTLx.SRC_MSIZE, CTLx.DEST_MSIZE, as shown in Figure 21. In this case, the
DMA single outputs inform the DW_ahb_dmac that it is still possible to perform single data item
transfers, so it can access all data items in the transmit/receive FIFO and complete the DMA block
transfer. The DMA single outputs from the DW_apb_uart are not sampled by the DW_ahb_dmac
otherwise. This is illustrated in the following example.

Consider first an example where the receive FIFO channel of the DW_apb_uart is as follows:

DMA.CTLx.SRC_MSIZE = decoded level of UART.FCR[7:6] = 4
DMA.CTLx.BLOCK_TS = 12

For the example in Figure 20, with the block size set to 12, the dma_rx_req_n signal is asserted when
four data items are present in the receive FIFO. The dma_rx_req_n signal is asserted three times during
the DW_apb_uart serial transfer, ensuring that all 12 data items are read by the DW_ahb_dmac. All
DMA requests read a block of data items and no single DMA transactions are required. This block
transfer is made up of three burst transactions.

Now, for the following block transfer:

DMA.CTLx.SRC_MSIZE = decoded level of UART.FCR[7:6] = 4
DMA.CTLx.BLOCK_TS = 15

The first 12 data items are transferred as already described using 3 burst transactions. But when the last
three data frames enter the receive FIFO, the dma_rx_req_n signal is not activated because the FIFO
level is below the watermark level. The DW_ahb_dmac samples dma_rx_single_n and completes the
DMA block transfer using three single transactions. The block transfer is made up of three burst
transactions followed by three single transactions.

Figure 27 shows a single transaction. The handshaking loop is as follows:

1. dma_tx_single_n/dma_rx_single_n asserted by DW_apb_uart

2. dma_tx_ack_n/dma_rx_ack_n asserted by DW_ahb_dmac

3. dma_tx_single_n/dma_rx_single_n de-asserted by DW_apb_uart

4. dma_tx_ack_n/dma_rx_ack_n de-asserted by DW_ahb_dmac

January 20, 2006 Synopsys, Inc. 67

DesignWare DW_apb_uart Databook Chapter 3: Functional Description

Figure 27: Single Transaction

Figure 28 shows a burst transaction, followed by three back-to-back single transactions, where the hclk
frequency is twice the pclk frequency.

Figure 28: Burst Transaction + 3 Back-to-Back Singles – hclk = 2*pclk

Note
The single transaction request signals, dma_tx_single_n and dma_rx_single_n, are
generated in the DW_apb_uart on the pclk edge and sampled in DW_ahb_dmac on hclk.
The acknowledge signals, dma_tx_ack_n and dma_rx_ack_n, are generated in the
DW_ahb_dmac on the hclk edge hclk and sampled in the DW_apb_uart on pclk. The
handshaking mechanism between the DW_ahb_dmac and the DW_apb_uart supports
quasi-synchronous clocks; that is, hclk and pclk must be phase aligned and the hclk
frequency must be a multiple of pclk frequency.

m0 m1 m2 n0 n1 n2 n3 n4

single transaction complete

pclk

hclk

dma_rx_req_n

dma_rx_ack_n

dma_rx_single_n

hclk

pclk

dma_tx_req_n

dma_tx_ack_n

dma_tx_single_n

burst transaction request

burst transaction complete
Single transaction complete

Single transaction complete
Single transaction complete

68 Synopsys, Inc. January 20, 2006

Chapter 3: Functional Description DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 69

DesignWare DW_apb_uart Databook Chapter 4: Parameters

4
Parameters

This chapter describes the configuration parameters used by the DW_apb_uart.

Parameter Descriptions
The following list identifies the configurable parameters supported by the DW_apb_uart:

Table 4: Top-Level Parameters

Label Parameter Definition

Use DesignWare Foundation
Synthesis Library
(active only when source
license available)

Parameter Name: USE_FOUNDATION
Legal Values: True (1) or False (0)
Default Value: True; only if Source license is available.
Dependencies: Must have Source license.
Description: Enables source code customers to write out RTL without having a
DesignWare license, or to retain DesignWare Foundation Building Block Library
parts in their design.

APB Data Bus Width Parameter Name: APB_DATA_WIDTH
Values: 8, 16, 32
Default Value: 32
Dependencies: None
Description: Width of APB data bus to which this component is attached. Note
that even though the data width can be set to 8, 16 or 32, only the lowest 8 data
bits are ever used, since register access is on 32-bit boundaries. All other bits are
held at static 0.

UART FIFO Depth Parameter Name: FIFO_MODE
Values: NONE, 16, 32, …, 2 KB (2048)
Default Value: 16
Dependencies: None
Description: Receiver and Transmitter FIFO depth in bytes. A setting of NONE
means no FIFOs, which implies the 16450-compatible mode of operation. Most
enhanced features are unavailable in the 16450 mode such as the Auto Flow
Control and Programmable THRE interrupt modes. Setting a FIFO depth greater
than 256 restricts the FIFO Memory to External only. For more details, refer to
“FIFO Support” on page 48.

70 Synopsys, Inc. January 20, 2006

Chapter 4: Parameters DesignWare DW_apb_uart Databook

FIFO Memory Type Parameter Name: MEM_SELECT_USER
Values: External (0) - User-supplied memory

Internal (1) - DesignWare memory instantiation
Default Value: External (0)
Dependencies: Only changeable to Internal if (FIFO_MODE != NONE) and
(FIFO_MODE <= 256)
Description: Selects between external, user-supplied memory or internal
DesignWare memory (DW_ram_r_w_s_dff) for the receiver and transmitter
FIFOs. FIFO depths greater than 256 restrict FIFO Memory selection to external.
In addition, selection of internal memory restricts the Memory Read Port Type to
D-flip-flop-based, synchronous read port RAMs.

(None) Parameter Name: MEM_MODE_USER
Values: Not changeable
Default Value: Async (0)
Description: This non-changeable parameter has been retained in this release of
the DW_apb_uart for backward compatibility with pre-3.00a versions of this
component. The later versions (post-3.00a) of the DW_apb_uart no longer
require logic changes that used to be controlled by this parameter when
you used either synchronous or asynchronous read port RAMs.

Asynchronous Serial Clock
Support

Parameter Name: CLOCK_MODE
Values: Disabled (1) - One clock

Enabled (2) - Two clocks
Default Value: Disabled (1)
Dependencies: Asynchronous Serial Clock Support is automatically enabled
when SIR_LP_MODE = Enabled or when SIR_LP_RX = Enabled.
Description: When set to Disabled, the DW_apb_uart is implemented with one
system clock (pclk). When set to Enabled, two system clocks (pclk and sclk) are
implemented in order to accommodate accurate serial baud rate settings, as well
as APB bus interface requirements. Selecting Disabled, or a one-system clock,
greatly restricts system clock settings available for accurate baud rates. For more
details, refer to “Clock Support” on page 49.

Auto Flow Control Parameter Name: AFCE_MODE
Values: Disabled (0) - Auto Flow Control not available

Enabled (1) - Auto Flow Control
Default Value: Disabled (0)
Dependencies: Changeable to Enabled only when (FIFO_MODE != NONE)
Description: Configures the peripheral to have the 16750-compatible auto flow
control mode. For more details, refer to “Auto Flow Control” on page 51.

Table 4: Top-Level Parameters (Continued)

Label Parameter Definition

January 20, 2006 Synopsys, Inc. 71

DesignWare DW_apb_uart Databook Chapter 4: Parameters

Programmable THRE Interrupt
Mode

Parameter Name: THRE_MODE_USER
Values: Disabled (0) - THRE Interrupt mode not available

Enabled (1) - THRE Interrupt mode
Default Value: Disabled (0)
Dependencies: Changeable to Enabled only when (FIFO_MODE != NONE)
Description: Configures the peripheral to have a programmable Transmitter
Hold Register Empty (THRE) Interrupt mode. For more information, refer to
“Programmable THRE Interrupt” on page 54.

IrDA SIR Mode Support Parameter Name: SIR_MODE
Values: Disabled (0) - IrDA SIR mode not available

Enabled (1) - IrDA SIR mode
Default Value: Disabled (0)
Dependencies: None
Description: Configures the peripheral to have IrDA 1.0 SIR infrared mode. For
more details, refer to “IrDA 1.0 SIR Protocol” on page 47.

Include Clock Gate Enable
Output on I/F?

Parameter Name: CLK_GATE_EN
Values: No (0) - Clock gate enable is not available

Yes (1) - Clock gate enable
Default Value: No (0)
Dependencies: None
Description: Configures the peripheral to have a clock gate enable output signal
on the interface that indicates that the device is inactive so clocks may be gated.

Include FIFO Access Mode? Parameter Name: FIFO_ACCESS
Values: No (0) - FIFO access mode is not available

Yes (1) - FIFO access mode
Default Value: No (0)
Dependencies: None
Description: Configures the peripheral to have a programmable FIFO access
mode. This is used for test purposes to allow the receive FIFO to be written and
the transmit FIFO to be read when FIFOs are implemented and enabled. When
FIFOs are not implemented or not enabled it allows the RBR to be written and
the THR to be read. For more details, refer to “FIFO Support” on page 48.

Include Additional DMA
Signals on I/F?

Parameter Name: DMA_EXTRA
Values: No (0) - Additional DMA signals not included

Yes (1) - Additional DMA signals included
Default Value: No (0)
Dependencies: None
Description: Configures the peripheral to have four additional DMA signals on
the interface so that the device is compatible with the DesignWare DMA
controller interface requirements.

Table 4: Top-Level Parameters (Continued)

Label Parameter Definition

72 Synopsys, Inc. January 20, 2006

Chapter 4: Parameters DesignWare DW_apb_uart Databook

Active low DMA Signals? Parameter Name: DMA_POL
Values: No (0) - DMA signals set to active-high

Yes (1) - DMA signals set to active-low
Default Value: Yes (1)
Dependencies: None
Description: Selects the polarity of the DMA interface signals.

Low Power IrDA SIR Mode
Support

Parameter Name: SIR_LP_MODE
Values: Disabled (0) - Low-power IrDA SIR mode not available

Enabled (1) - Low-power IrDA SIR mode
Default Value: Disabled (0)
Dependencies: This is only changeable when SIR_MODE = Enabled.
Description: Configures the peripheral to operate in a low-power IrDA SIR
mode. As the DW_apb_uart does not support a low-power mode with a counter
system to maintain a 1.63us infrared pulse, Asynchronous Serial Clock Support
is automatically enabled, and the sclk must be fixed to 1.8432MHz. This provides
a 1.63us sir_out_n pulse at 115.2Kbaud.

Support for IrDA SIR Low-
Power Reception Capabilities

Parameter Name: SIR_LP_RX
Values: Disabled (0)

Enabled (1)
Default Value: Disabled (0)
Dependencies: This is only changeable when SIR_MODE = Enabled.
Description: Configures the peripheral to have SIR low-power reception
capabilities. Asynchronous Serial Clock support is automatically enabled in this
mode.

Include On-chip Debug Output
Signals on I/F?

Parameter Name: DEBUG
Values: No (0) - On-chip debug signals not included

Yes (1) - On-chip debug signals included
Default Value: No (0)
Dependencies: None
Description: Configures the peripheral to have on-chip debug signals on the
interface.

Include Baud Clock Reference
Output Signal (baudout_n) on
I/F?

Parameter Name: BAUD_CLK
Values: No (0) - baudout_n signal not included

Yes (1) - baudout_n signal included
Default Value: Yes (1)
Dependencies: None
Description: Configures the peripheral to have a baud clock reference output
(baudout_n) signal on the interface.

Table 4: Top-Level Parameters (Continued)

Label Parameter Definition

January 20, 2006 Synopsys, Inc. 73

DesignWare DW_apb_uart Databook Chapter 4: Parameters

Make FIFO Status and Shadow
Register Options Available?

Parameter Name: ADDITIONAL_FEATURES
Values: No (0) - FIFO Status and Shadow registers not included

Yes (1) - Registers included
Default Value: No (0)
Dependencies: None
Description: Configures the peripheral to have both the FIFO Status registers
and the Shadow registers available. Also configures the peripheral to have the
configuration ID, UART component version and the peripheral ID registers.

Include Software Accessible
FIFO Status Registers?

Parameter Name: FIFO_STAT
Values: No (0) - FIFO Status registers not included

Yes (1) - FIFO Status registers included
Default Value: No (0)
Dependencies: This is only changeable when

FIFO_MODE != NONE and
ADDITIONAL_FEATURES = YES.

Description: Configures the peripheral to have three additional FIFO status
registers.

Include Additional Shadow
Registers for Reducing
Software Overhead?

Parameter Name: SHADOW
Values: No (0) - Additional registers not included

Yes (1) - Additional Shadow registers included
Default Value: No (0)
Dependencies: This is only changeable when

ADDITIONAL_FEATURES = YES.
Description: Configures the peripheral to have seven additional registers that
shadow some of the existing register bits that are regularly modified by software.
These can be used to reduce the software overhead that is introduced by having to
perform read-modify writes.

(None) Parameter Name: LATCH_MODE_USER
Values: (Not changeable)
Default Value: No (0)
Dependencies: None
Description: This is a non-changeable parameter that is included for software
backward compatibility. That is so that no errors arise when the peripheral is used
with existing software.

Include Configuration
Identification Register

Parameter Name: UART_ADD_ENCODED_PARAMS
Values: No (0) - configuration register not included

Yes (1) - configuration register included
Default Value: No (0)
Dependencies: This is only changeable when ADDITIONAL_FEATURES =
YES.
Description: Configures the peripheral to have a configuration register.

Table 4: Top-Level Parameters (Continued)

Label Parameter Definition

74 Synopsys, Inc. January 20, 2006

Chapter 4: Parameters DesignWare DW_apb_uart Databook

Table 5: Legacy Parameters

Label Parameter Definition

(None) Parameter Name: MEM_MODE_USER
Values: Not changeable
Default Value: Async (0)
Description: This non-changeable parameter has been retained in this release of
the DW_apb_uart for backward compatibility with pre-3.00a versions of this
component. The later versions (post-3.00a) of the DW_apb_uart no longer
require logic changes that used to be controlled by this parameter when
you used either synchronous or asynchronous read port RAMs.

(None) Parameter Name: LATCH_MODE_USER
Values: (Not changeable)
Default Value: No (0)
Dependencies: None
Description: This is a non-changeable parameter that is included for software
backward compatibility. That is so that no errors arise when the peripheral is used
with existing software.

January 20, 2006 Synopsys, Inc. 75

DesignWare DW_apb_uart Databook Chapter 5: Signals

5
Signals

The following subsections describe the DW_apb_uart signals:

● “DW_apb_uart Interface Diagram” on page 76
● “DW_apb_uart Signal Descriptions” on page 77

76 Synopsys, Inc. January 20, 2006

Chapter 5: Signals DesignWare DW_apb_uart Databook

DW_apb_uart Interface Diagram
Figure 29 shows an I/O diagram of the DW_apb_uart.

Figure 29: DW_apb_uart I/O Diagram

 sclk

intr

pwdata

 out2_n

dma_rx_single
sin

rts_n

cts_n

dtr_n

dsr_n

ri_n
dcd_n

 out1_npwrite

psel

baudout_n

tx_ram_out

tx_ram_we_n

rx_ram_out

prdata

penable

paddr

tx_ram_in

tx_ram_rd_addr
tx_ram_wr_addr

rx_ram_in
rx_ram_rd_addrscan_mode

DW_apb_uart

 presetn

rx_ram_re_n

rx_ram_wr_addr
rx_ram_we_n

tx_ram_re_n

pclk

sir_in

sir_out_n

dma_tx_ack
dma_rx_ack

debug

sout

dma_tx_single
dma_rx_req

dma_tx_req

uart_lp_req_sclk
uart_lp_req_pclk

s_rst_n

Optional signals

rx_ram_rd_ce_n

tx_ram_rd_ce_n

*txrdy_n

* These signals are provided only for backward compatibility.

*rxrdy_n

Signals in red are registered

January 20, 2006 Synopsys, Inc. 77

DesignWare DW_apb_uart Databook Chapter 5: Signals

DW_apb_uart Signal Descriptions
Table 6 provides a list and description of the DW_apb_uart signals.

Note
The Description column in Table 6 provides detailed information about each signal.

In the Registered field, a “Yes” indicates whether an I/O signal is directly connected to an
internal register and nothing else. An I/O signal is also considered to be registered if the
signal is connected to one or more inverters or buffers between the I/O port and internal
register, but not connected to any logic that involves another signal.

The Input/Output Delay field provides the percentage of the clock cycle assumed to be
used by logic outside this design. The given value is used to automatically define the
default synthesis constraints for input/output delay. You can override these default values
in the Specify Port Constraints activity in coreConsultant. For more information, refer to
“Create Gate-Level Netlist” on page 32.

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

APB Slave Interface

pclk 1 bit I APB clock used in the APB interface to program registers
Registered: No
Synchronous to: N/A
Default Input Delay: N/A

presetn 1 bit I APB clock-domain reset
Active State: Low
Registered: No
Synchronous to: pclk on de-assertion,

asynchronous on assertion
Default Input Delay: 50% of pclk

psel 1 bit I APB peripheral select
Active State: High
Registered: No
Synchronous to: pclk
Default Input Delay: 50% of pclk

paddrn 8 bits I APB address bus. Uses the lower bits of the APB address bus for
register decode.
Registered: No
Synchronous to: pclk
Default Input Delay: 50% of pclk

78 Synopsys, Inc. January 20, 2006

Chapter 5: Signals DesignWare DW_apb_uart Databook

pwdatan APB_DATA_
WIDTH

I APB write data bus
Registered: No
Synchronous to: pclk
Default Input Delay: 50% of pclk

pwrite 1 bit I APB write control
Active State: High
Registered: No
Synchronous to: pclk
Input Delay: 50% of pclk

penable 1 bit I APB enable control used for timing read/write operations
Active State: High
Registered: No
Synchronous to: pclk
Default Input Delay: 50% of pclk

prdatan APB_DATA_
WIDTH

O APB read data bus
Registered: Yes
Synchronous to: pclk
Default Output Delay: 90% of pclk

Application Interface

sclk 1 bit I Serial interface clock
Registered: No
Synchronous to: Not applicable
Default Input Delay: Not applicable
Dependencies: Only present when CLOCK_MODE==Enabled.

s_rst_n 1 bit I Serial interface reset
Active State: Low
Registered: No
Synchronous to: sclk on de-assertion,

asynchronous on assertion
Default Input Delay: 40% of sclk
Dependencies: Only present when CLOCK_MODE==Enabled.

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

January 20, 2006 Synopsys, Inc. 79

DesignWare DW_apb_uart Databook Chapter 5: Signals

scan_mode 1 bit I Scan mode used to ensure that test automation tools can control all
asynchronous flop signals. During scan this signal must be set high all
the time. In normal operation you must tie this signal low.
Active State: High
Registered: No
Synchronous to: pclk
Default Input Delay: 20% of pclk

FIFO Interface (Dependencies: Present only when FIFO_MODE!=NONE and MEM_SELECT==External)

tx_ram_outn 8 bits I Data to the transmit FIFO RAM
Registered: No
Synchronous to: pclk
Default Input Delay: 60% of pclk

tx_ram_inn 8 bits O Data from the transmit FIFO RAM
Registered: No
Synchronous to: pclk
Default Output Delay: 60% of pclk

tx_ram_rd_addrn log2(FIFO_
MODE)

O Read address pointer for the transmit FIFO RAM
Registered: Yes
Synchronous to: pclk
Default Output Delay: 60% of pclk

tx_ram_wr_addrn log2(FIFO_
MODE)

O Write address pointer for transmit FIFO RAM
Registered: Yes
Synchronous to: pclk
Default Output Delay: 60% of pclk

tx_ram_we_n 1 bit O Write enable for the transmit FIFO RAM
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: 60% of pclk

tx_ram_re_n 1 bit O Read enable for the transmit FIFO RAM wake-up
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: 60% of pclk

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

80 Synopsys, Inc. January 20, 2006

Chapter 5: Signals DesignWare DW_apb_uart Databook

tx_ram_rd_ce_n 1 bit O Read port chip enable for transmit FIFO RAM
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 60% of pclk

rx_ram_outn 10 bits I Data to the receive FIFO RAM
Registered: No
Synchronous to: pclk
Default Input Delay: 60% of pclk

rx_ram_inn 10 bits O Data from the receive FIFO RAM
Registered: No
Synchronous to: pclk
Default Output Delay: 60% of pclk

rx_ram_rd_addrn log2(FIFO_
MODE)

O Read address pointer for the receive FIFO RAM
Registered: Yes
Synchronous to: pclk
Default Output Delay: 60% of pclk

rx_ram_wr_addrn log2(FIFO_
MODE)

O Write address pointer for the receive FIFO RAM
Registered: Yes
Synchronous to: pclk
Default Output Delay: 60% of pclk

rx_ram_we_n 1 bit O Write enable for the receive FIFO RAM
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: 60% of pclk

rx_ram_re_n 1 bit O Read enable for the receive FIFO RAM wake-up
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: 60% of pclk

rx_ram_rd_ce_n 1 bit O Read port chip enable for receive FIFO RAM
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 60% of pclk

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

January 20, 2006 Synopsys, Inc. 81

DesignWare DW_apb_uart Databook Chapter 5: Signals

Modem Interface

cts_n 1 bit I Clear To Send Modem Status
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Input Delay: No specific requirement

dsr_n 1 bit I Data Set Ready Modem Status input
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Input Delay: No specific requirement

dcd_n 1 bit I Data Carrier Detect Modem Status input
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Input Delay: No specific requirement

ri_n 1 bit I Ring Indicator Modem Status input
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Input Delay: No specific requirement

dtr_n 1 bit O Modem Control Data Terminal Ready output
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: No specific requirement

rts_n 1 bit O Modem Control Request To Send output
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: No specific requirement

out2_n 1 bit O Modem Control Programmable output 2
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: No specific requirement

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

82 Synopsys, Inc. January 20, 2006

Chapter 5: Signals DesignWare DW_apb_uart Databook

out1_n 1 bit O Modem Control Programmable output 1
Active State: Low
Registered: No
Synchronous to: pclk
Default Output Delay: No specific requirement

DMA Interface (Active State: The following signals are shown as active-low signals. An active-high version
of each signal is created when DMA_POL==NO)

dma_tx_req_n 1 bit O Transmit Buffer Ready indicates that the Transmit buffer requires
service from the DMA controller
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 90% of pclk

dma_tx_single_n 1 bit O DMA Transmit FIFO Single informs the DMA controller that there is
at least one free entry in the Transmit buffer/FIFO. This output does
not request a DMA transfer.
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 90% of pclk
Dependencies: Present only when DMA_EXTRA==Yes

dma_tx_ack_n 1 bit I DMA Transmit Acknowledge indicates that the DMA Controller has
transmitted the block of data to the DW_apb_uart for transmission
Active State: Low
Registered: No
Synchronous to: pclk
Default Input Delay: 50% of pclk
Dependencies: Present only when DMA_EXTRA==Yes

dma_rx_req_n 1 bit O Receive Buffer Ready indicates that the Receive buffer requires
service from the DMA controller
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 90% of pclk

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

January 20, 2006 Synopsys, Inc. 83

DesignWare DW_apb_uart Databook Chapter 5: Signals

dma_rx_single_n 1 bit O DMA Receive FIFO Single informs the DMA controller that there is
at least one free entry in the Receive buffer/FIFO. This output does
not request a DMA transfer.
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 90% of pclk
Dependencies: Present only when DMA_EXTRA==Yes

dma_rx_ack_n 1 bit I DMA Receive Acknowledge indicates that the DMA Controller has
received the block of data from the DW_apb_uart.
Active State: Low
Registered: No
Synchronous to: pclk
Default Input Delay: 50% of pclk
Dependencies: Present only when DMA_EXTRA==Yes

txrdy_n 1 bit O This transmit buffer read signal is used for backward compatibility of
older DW_apb_uart components to indicate that the Transmit buffer
requires service from the DMA controller
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 90% of pclk
Dependencies: Present only when DMA_EXTRA==No

rxrdy_n 1 bit O This receive buffer read signal is used for backward compatibility of
older DW_apb_uart components to indicate that the Receive buffer
requires service from the DMA controller
Active State: Low
Registered: Yes
Synchronous to: pclk
Default Output Delay: 90% of pclk
Dependencies: Present only when DMA_EXTRA==No

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

84 Synopsys, Inc. January 20, 2006

Chapter 5: Signals DesignWare DW_apb_uart Databook

Serial Interface

sin 1 bit I Serial input
Active State: High
Registered: Yes
Synchronous to: pclk (in single clock configuration)

sclk (in two clock configuration)
Default Input Delay: 85% of pclk or sclk, depending on
configuration

sout 1 bit O Serial output
Active State: High
Registered: Yes
Synchronous to: pclk (in single clock configuration)

sclk (in two clock configuration)
Default Output Delay: 90% of pclk or sclk, depending on
configuration

Infrared Interface (Dependencies: The following signals are present only when SIR_MODE==Enabled)

sir_in 1 bit I IrDA SIR input
Active State: High
Registered: Yes
Synchronous to: pclk (in single clock configuration)

sclk (in two clock configuration)
Default Input Delay: 85% of pclk or sclk, depending on
configuration

sir_out_n 1 bit O IrDA SIR output
Active State: Low
Registered: Yes
Synchronous to: pclk (in single clock configuration)

sclk (in two clock configuration)
Default Output Delay: 90% of pclk or sclk, depending on
configuration

Interrupt Interface

intr 1 bit O Interrupt
Active State: High
Registered: Yes
Synchronous to: pclk
Default Output Delay: 80% of pclk

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

January 20, 2006 Synopsys, Inc. 85

DesignWare DW_apb_uart Databook Chapter 5: Signals

Debug Interface

debugn 32 bits O On-chip debug signals as follows:
debug[31:14] = RAZ
debug[13] = RX push indication

(RBR or RX FIFO)
debug[12] = TX pop indication (THR or TX FIFO)
debug[11:10] = receiver trigger (FCR[7:6])
debug[9:8] = TX empty trigger (FCR[5:4])
debug[7] = DMA mode (FCR{[3])
debug[6:1] = individual interrupt sources:

debug[6] = line status interrupt
debug[5] = data available interrupt
debug[4] = character timeout interrupt
debug[3] = THRE interrupt
debug[2] = modem status interrupt
debug[1] = busy detect interrupt

debug[0] = FIFO enable (FCR{[0]).
Registered: No
Synchronous to: pclk
Output Delay: No specific requirement
Dependencies: Present only when DEBUG==Yes.

Clock Control Interface

uart_lp_req_pclk 1 bit O pclk domain clock gate signal indicates that the UART is inactive, so
clocks may be gated to put the device in a low-power (lp) mode.
Active State: High
Registered: Yes
Synchronous to: pclk
Default Output Delay: 25% of pclk
Dependencies: Present only when CLK_GATE_EN==Include.

uart_lp_req_sclk 1 bit O sclk domain clock gate signal indicates that the UART is inactive, so
clocks may be gated to put the device in a low-power (lp) mode.
Active State: High
Registered: Yes
Synchronous to: sclk
Default Output Delay: 25% of sclk
Dependencies: Present only when CLK_GATE_EN==Include
and CLOCK_MODE==Enabled.

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

86 Synopsys, Inc. January 20, 2006

Chapter 5: Signals DesignWare DW_apb_uart Databook

baudout_n 1 bit O Transmit clock output
Active State: Low
Registered: No
Synchronous to: pclk (in single clock configuration)

sclk (in two clock configuration)
Default Output Delay: 5% of pclk or sclk, depending on
configuration
Dependencies: Present only when BAUD_CLK==Yes.

a. An n on signal names denotes multiple signals with suffixes of (Width minus 1) down-to 0.

Table 6: DW_apb_uart Signal Description

Namea Width I/O Description

January 20, 2006 Synopsys, Inc. 87

DesignWare DW_apb_uart Databook Chapter 6: Registers

6
Registers

This chapter describes the programmable registers of the DW_apb_uart.

Register Memory Map
The DW_apb_uart has a number of internal registers that are accessed through the 5-bit address bus.

Note
Since DW_apb_uart registers are only located 32-bit boundaries, paddr[1:0] may be tied
low permanently, if so desired. This would allow backward compatibility with standard
16550 UART programmability.

The following table summarizes the register memory map for the DW_apb_uart:

Name
Address
Offset Width R/W Description

RBR 0x00 32 bits R Receive Buffer Register
Reset Value: 0x0
Dependencies: LCR[7] bit = 0

THR 32 bits W Transmit Holding Register
Reset Value: 0x0
Dependencies: LCR[7] bit = 0

DLL 32 bits R/W Divisor Latch (Low)
Reset Value: 0x0
Dependencies: LCR[7] bit = 1

DLH 0x04 32 bits R/W Divisor Latch (High)
Reset Value: 0x0
Dependencies: LCR[7] bit = 1

IER 32 bits R/W Interrupt Enable Register
Reset Value: 0x0
Dependencies: LCR[7] bit = 0

88 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

IIR 0x08 32 bits R Interrupt Identification Register
Reset Value: 0x01

FCR 32 bits W FIFO Control Register
Reset Value: 0x0

LCR 0x0C 32 bits R/W Line Control Register
Reset Value: 0x0

MCR 0x10 32 bits R/W Modem Control Register
Reset Value: 0x0

LSR 0x14 32 bits R Line Status Register
Reset Value: 0x60

MSR 0x18 32 bits R Modem Status Register
Reset Value: 0x0

SCR 0x1C 32 bits R/W Scratchpad Register
Reset Value: 0x0

LPDLL 0x20 32 bits R/W Low Power Divisor Latch (Low) Register
Reset Value: 0x0

LPDLH 0x24 32 bits R/W Low Power Divisor Latch (High) Register
Reset Value: 0x0

Reserved 0x28 -
0x2C

– – –

SRBR 0x30 -
0x6C

32 bits R Shadow Receive Buffer Register
Reset Value: 0x0
Dependencies: LCR[7] bit = 0

STHR 32 bits W Shadow Transmit Holding Register
Reset Value: 0x0
Dependencies: LCR[7] bit = 0

FAR 0x70 32 bits R/W FIFO Access Register
Reset Value: 0x0

TFR 0x74 32 bits R Transmit FIFO Read
Reset Value: 0x0

RFW 0x78 32 bits W Receive FIFO Write
Reset Value: 0x0

USR 0x7C 32 bits R UART Status Register
Reset Value: 0x6

TFL 0x80 See
Description
(page 118)

R Transmit FIFO Level
Width: FIFO_ADDR_WIDTH + 1
Reset Value: 0x0

Name
Address
Offset Width R/W Description

January 20, 2006 Synopsys, Inc. 89

DesignWare DW_apb_uart Databook Chapter 6: Registers

RFL 0x84 See
Description
(page 119)

R Receive FIFO Level
Width: FIFO_ADDR_WIDTH + 1
Reset Value: 0x0

SRR 0x88 32 bits W Software Reset Register
Reset Value: 0x0

SRTS 0x8C 32 bits R/W Shadow Request to Send
Reset Value: 0x0

SBCR 0x90 32 bits R/W Shadow Break Control Register
Reset Value: 0x0

SDMAM 0x94 32 bits R/W Shadow DMA Mode
Reset Value: 0x0

SFE 0x98 32 bits R/W Shadow FIFO Enable
Reset Value: 0x0

SRT 0x9C 32 bits R/W Shadow RCVR Trigger
Reset Value: 0x0

STET 0xA0 32 bits R/W Shadow TX Empty Trigger
Reset Value: 0x0

HTX 0xA4 32 bits R/W Halt TX
Reset Value: 0x0

DMASA 0xA8 1 bit W DMA Software Acknowledge
Reset Value: 0x0

– 0xAC -
0xF0

– – –

CPR 0xF4 32 bits R Component Parameter Register
Reset Value: Configuration-dependent

UCV 0xF8 32 bits R UART Component Version
Reset Value: See the Releases table in the
DW_apb_uart Release Notes

CTR 0xFC 32 bits R Component Type Register
Reset Value: 0x44570110

Name
Address
Offset Width R/W Description

90 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

Register and Field Descriptions
The following subsections describe the data fields of the DW_apb_uart registers.

● RBR on page 91
● THR on page 92
● DLH on page 93
● DLL on page 94
● IER on page 95
● IIR on page 96
● FCR on page 98
● LCR on page 100
● MCR on page 102
● LSR on page 104
● SCR on page 109
● LPDLL on page 110
● LPDLH on page 111
● SRBR on page 112
● STHR on page 113
● FAR on page 114
● TFR on page 115
● RFW on page 116
● USR on page 117
● TFL on page 118
● RFL on page 119
● SRR on page 120
● SRTS on page 121
● SBCR on page 122
● SDMAM on page 123
● SFE on page 124
● SRT on page 125
● STET on page 126
● HTX on page 127
● CPR on page 128
● UCV on page 129
● CTR on page 130

January 20, 2006 Synopsys, Inc. 91

DesignWare DW_apb_uart Databook Chapter 6: Registers

RBR
● Name: Receive Buffer Register
● Size: 32 bits
● Address Offset: 0x00
● Read/write access: read-only

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Receive
Buffer
Register

R Data byte received on the serial input port (sin) in UART mode, or the serial
infrared input (sir_in) in infrared mode. The data in this register is valid only if
the Data Ready (DR) bit in the Line Status Register (LCR) is set.
If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are disabled (FCR[0]
set to zero), the data in the RBR must be read before the next data arrives,
otherwise it is overwritten, resulting in an over-run error.
If in FIFO mode (FIFO_MODE != NONE) and FIFOs are enabled (FCR[0] set
to one), this register accesses the head of the receive FIFO. If the receive FIFO is
full and this register is not read before the next data character arrives, then the
data already in the FIFO is preserved, but any incoming data are lost and an
over-run error occurs.
Reset Value: 0x0

Reserved

31:8

Receive Buffer Register

7:0

92 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

THR
● Name: Transmit Holding Register
● Size: 32 bits
● Address Offset: 0x00
● Read/write access: write-only

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Transmit
Holding
Register

W Data to be transmitted on the serial output port (sout) in UART mode or the
serial infrared output (sir_out_n) in infrared mode. Data should only be
written to the THR when the THR Empty (THRE) bit (LSR[5]) is set.
If in non-FIFO mode or FIFOs are disabled (FCR[0] = 0) and THRE is set,
writing a single character to the THR clears the THRE. Any additional
writes to the THR before the THRE is set again causes the THR data to be
overwritten.
If in FIFO mode and FIFOs are enabled (FCR[0] = 1) and THRE is set, x
number of characters of data may be written to the THR before the FIFO is
full. The number x (default=16) is determined by the value of FIFO Depth
that you set during configuration. Any attempt to write data when the FIFO
is full results in the write data being lost.
Reset Value: 0x0

Reserved

31:8

Transmit Holding Register

7:0

January 20, 2006 Synopsys, Inc. 93

DesignWare DW_apb_uart Databook Chapter 6: Registers

DLH
● Name: Divisor Latch High
● Size: 32 bits
● Address Offset: 0x04
● Read/write access: read/write

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Divisor
Latch
(High)

R/W Upper 8-bits of a 16-bit, read/write, Divisor Latch register that contains the
baud rate divisor for the UART. This register may only be accessed when the
DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero).
The output baud rate is equal to the serial clock (pclk if one clock design, sclk
if two clock design (CLOCK_MODE == Enabled)) frequency divided by
sixteen times the value of the baud rate divisor, as follows: baud rate = (serial
clock freq) / (16 * divisor).
Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the
baud clock is disabled and no serial communications occur. Also, once the
DLH is set, at least 8 clock cycles of the slowest DW_apb_uart clock should
be allowed to pass before transmitting or receiving data.
Reset Value: 0x0

Reserved

31:8

Divisor Latch (high)

7:0

94 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

DLL
● Name: Divisor Latch Low
● Size: 32 bits
● Address Offset: 0x00
● Read/write access: read/write

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Divisor
Latch
(Low)

R/W Lower 8 bits of a 16-bit, read/write, Divisor Latch register that contains the
baud rate divisor for the UART. This register may only be accessed when the
DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero).
The output baud rate is equal to the serial clock (pclk if one clock design, sclk
if two clock design (CLOCK_MODE == Enabled)) frequency divided by
sixteen times the value of the baud rate divisor, as follows: baud rate = (serial
clock freq) / (16 * divisor).
Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the
baud clock is disabled and no serial communications occur. Also, once the
DLL is set, at least 8 clock cycles of the slowest DW_apb_uart clock should
be allowed to pass before transmitting or receiving data.
Reset Value: 0x0

Reserved

31:8

Divisor Latch (low)

7:0

January 20, 2006 Synopsys, Inc. 95

DesignWare DW_apb_uart Databook Chapter 6: Registers

IER
● Name: Interrupt Enable Register
● Size: 32 bits
● Address Offset: 0x04
● Read/write access: read/write

Bits Name R/W Description

31:8 Reserved and read as zero

7 PTIME R/W Programmable THRE Interrupt Mode Enable that can be written to only
when THRE_MODE_USER == Enabled, always readable. This is used to
enable/disable the generation of THRE Interrupt.
0 = disabled
1 = enabled
Reset Value: 0x0

6:4 Reserved and read as zero

3 EDSSI R/W Enable Modem Status Interrupt. This is used to enable/disable the
generation of Modem Status Interrupt. This is the fourth highest priority
interrupt.
0 = disabled
1 = enabled
Reset Value: 0x0

2 ELSI R/W Enable Receiver Line Status Interrupt. This is used to enable/disable the
generation of Receiver Line Status Interrupt. This is the highest priority
interrupt.
0 = disabled
1 = enabled
Reset Value: 0x0

1 ETBEI R/W Enable Transmit Holding Register Empty Interrupt. This is used to
enable/disable the generation of Transmitter Holding Register Empty
Interrupt. This is the third highest priority interrupt.
0 = disabled
1 = enabled
Reset Value: 0x0

Reserved
PTIME

Reserved
EDSSI

ELSI
ETBEI
ERBFI

31:8 6:47 3 2 1 0

96 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

IIR
● Name: Interrupt Identity Register
● Size: 32 bits
● Address Offset: 0x08
● Read/write access: read-only

0 ERBFI R/W Enable Received Data Available Interrupt. This is used to enable/disable the
generation of Received Data Available Interrupt and the Character Timeout
Interrupt (if in FIFO mode and FIFOs enabled). These are the second
highest priority interrupts.
0 = disabled
1 = enabled
Reset Value: 0x0

Table 7: Interrupt Identification Register

Bits Name R/W Description

31:8 Reserved and read as zero

7:6 FIFOs
Enabled (or
FIFOSE)

R FIFOs Enabled. This is used to indicate whether the FIFOs are enabled or
disabled.
00 = disabled
11 = enabled
Reset Value: 0x00

5:4 Reserved N/A Reserved and read as zero

3:0 Interrupt ID
(or IID)

R Interrupt ID. This indicates the highest priority pending interrupt which
can be one of the following types:
0000 = modem status
0001 = no interrupt pending
0010 = THR empty
0100 = received data available
0110 = receiver line status
0111 = busy detect
1100 = character timeout
The interrupt priorities are split into four levels that are detailed in Table 8
on page 97.
Bit 3 indicates an interrupt can only occur when the FIFOs are enabled and
used to distinguish a Character Timeout condition interrupt.
Reset Value: 0x01

Bits Name R/W Description

Reserved
FIFOSE

Reserved
IID

31:8 7:6 5:4 3:0

January 20, 2006 Synopsys, Inc. 97

DesignWare DW_apb_uart Databook Chapter 6: Registers

Table 8: Interrupt Control Functions

Interrupt ID Interrupt Set and Reset Functions

Bit 3 Bit 2 Bit 1 Bit 0
Priority

Level
Interrupt

Type Interrupt Source Interrupt Reset Control

0 0 0 1 – None None –

0 1 1 0 Highest Receiver
line status

Overrun/parity/ framing
errors or break interrupt

Reading the line status
register

0 1 0 0 Second Received
data
available

Receiver data available
(non-FIFO mode or
FIFOs disabled) or
RCVR FIFO trigger
level reached (FIFO
mode and FIFOs
enabled)

Reading the receiver buffer
register (non-FIFO mode or
FIFOs disabled) or the
FIFO drops below the
trigger level (FIFO mode
and FIFOs enabled)

1 1 0 0 Second Character
timeout
indication

No characters in or out
of the RCVR FIFO
during the last 4
character times and
there is at least 1
character in it during
this time

Reading the receiver buffer
register

0 0 1 0 Third Transmit
holding
register
empty

Transmitter holding
register empty (Prog.
THRE Mode disabled)
or XMIT FIFO at or
below threshold (Prog.
THRE Mode enabled)

Reading the IIR register (if
source of interrupt); or,
writing into THR (FIFOs or
THRE Mode not selected or
disabled) or XMIT FIFO
above threshold (FIFOs and
THRE Mode selected and
enabled).

0 0 0 0 Fourth Modem
status

Clear to send or data set
ready or ring indicator
or data carrier detect.
Note that if auto flow
control mode is
enabled, a change in
CTS (that is, DCTS set)
does not cause an
interrupt.

Reading the Modem status
register

0 1 1 1 Fifth Busy
detect
indication

Master has tried to write
to the Line Control
Register while the
DW_apb_uart is busy
(USR[0] is set to one).

Reading the UART status
register

98 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

FCR
● Name: FIFO Control Register
● Size: 32 bits
● Address Offset: 0x08
● Read/write access: write-only

This register is only valid when the DW_apb_uart is configured to have FIFOs implemented
(FIFO_MODE != NONE). If FIFOs are not implemented, this register does not exist and writing to this
register address has no effect; reading from this register address returns zero.

Bits Name R/W Description

31:8 Reserved and read as zero

7:6 RCVR
Trigger (or
RT)

W RCVR Trigger. This is used to select the trigger level in the receiver FIFO
at which the Received Data Available Interrupt is generated. In auto flow
control mode it is used to determine when the rts_n signal is de-asserted. It
also determines when the dma_rx_req_n signal is asserted in certain
modes of operation. For details on DMA support, refer to “DMA Support”
on page 58. The following trigger levels are supported:
00 = 1 character in the FIFO
01 = FIFO ¼ full
10 = FIFO ½ full
11 = FIFO 2 less than full
Reset Value: 0x0

5:4 TX Empty
Trigger (or
TET)

W TX Empty Trigger. Writes have no effect when THRE_MODE_USER ==
Disabled. This is used to select the empty threshold level at which the
THRE Interrupts are generated when the mode is active. It also determines
when the dma_tx_req_n signal is asserted when in certain modes of
operation. For details on DMA support, refer to “DMA Support” on
page 58. The following trigger levels are supported:
00 = FIFO empty
01 = 2 characters in the FIFO
10 = FIFO ¼ full
11 = FIFO ½ full
Reset Value: 0x0

Reserved
RCVR

TET
DMAM

XFIFOR
RFIFOR

FIFOE

31:8 5:47:6 3 2 1 0

January 20, 2006 Synopsys, Inc. 99

DesignWare DW_apb_uart Databook Chapter 6: Registers

3 DMA Mode
(or DMAM)

W DMA Mode. This determines the DMA signalling mode used for the
dma_tx_req_n and dma_rx_req_n output signals when additional DMA
handshaking signals are not selected (DMA_EXTRA == No). For details
on DMA support, refer to “DMA Support” on page 58.
0 = mode 0
1 = mode 1
Reset Value: 0x0

2 XMIT FIFO
Reset (or
XFIFOR)

W XMIT FIFO Reset. This resets the control portion of the transmit FIFO
and treats the FIFO as empty. This also de-asserts the DMA TX request
and single signals when additional DMA handshaking signals are selected
(DMA_EXTRA == YES). Note that this bit is 'self-clearing'. It is not
necessary to clear this bit.
Reset Value: 0x0

1 RCVR FIFO
Reset (or
RFIFOR)

W RCVR FIFO Reset. This resets the control portion of the receive FIFO and
treats the FIFO as empty. This also de-asserts the DMA RX request and
single signals when additional DMA handshaking signals are selected
(DMA_EXTRA == YES). Note that this bit is 'self-clearing'. It is not
necessary to clear this bit.
Reset Value: 0x0

0 FIFO Enable
(or FIFOE)

W FIFO Enable. This enables/disables the transmit (XMIT) and receive
(RCVR) FIFOs. Whenever the value of this bit is changed both the XMIT
and RCVR controller portion of FIFOs is reset.
Reset Value: 0x0

Bits Name R/W Description

100 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

LCR
● Name: Line Control Register
● Size: 32 bits
● Address Offset: 0x0C
● Read/write access: read/write

Bits Name R/W Description

31:8 Reserved and read as zero

7 DLAB R/W Divisor Latch Access Bit.Writeable only when UART is not busy (USR[0]
is zero), always readable. This bit is used to enable reading and writing of
the Divisor Latch register (DLL and DLH) to set the baud rate of the
UART. This bit must be cleared after initial baud rate setup in order to
access other registers.
Reset Value: 0x0

6 Break (or
BC)

R/W Break Control Bit.This is used to cause a break condition to be transmitted
to the receiving device. If set to one the serial output is forced to the spacing
(logic 0) state. When not in Loopback Mode, as determined by MCR[4], the
sout line is forced low until the Break bit is cleared. If SIR_MODE ==
Enabled and active (MCR[6] set to one) the sir_out_n line is continuously
pulsed. When in Loopback Mode, the break condition is internally looped
back to the receiver and the sir_out_n line is forced low.
Reset Value: 0x0

5 Stick Parity Reserved and read as zero

4 EPS R/W Even Parity Select. Writeable only when UART is not busy (USR[0] is
zero), always readable. This is used to select between even and odd parity,
when parity is enabled (PEN set to one). If set to one, an even number of
logic 1s is transmitted or checked. If set to zero, an odd number of logic 1s
is transmitted or checked.
Reset Value: 0x0

3 PEN R/W Parity Enable. Writeable only when UART is not busy (USR[0] is zero),
always readable. This bit is used to enable and disable parity generation and
detection in transmitted and received serial character respectively.
0 = parity disabled
1 = parity enabled
Reset Value: 0x0

Reserved
DLAB

BC
Stick Parity (raz)

EPS
PEN

STOP

31:8 67 3 25 1:04

DLS

January 20, 2006 Synopsys, Inc. 101

DesignWare DW_apb_uart Databook Chapter 6: Registers

2 STOP R/W Number of stop bits. Writeable only when UART is not busy (USR[0] is
zero), always readable. This is used to select the number of stop bits per
character that the peripheral transmits and receives. If set to zero, one stop
bit is transmitted in the serial data.
If set to one and the data bits are set to 5 (LCR[1:0] set to zero) one and a
half stop bits is transmitted. Otherwise, two stop bits are transmitted. Note
that regardless of the number of stop bits selected, the receiver checks only
the first stop bit.
0 = 1 stop bit
1 = 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit
Reset Value: 0x0

1:0 DLS (or
CLS, as used
in legacy)

R/W Data Length Select. Writeable only when UART is not busy (USR[0] is
zero), always readable. This is used to select the number of data bits per
character that the peripheral transmits and receives. The number of bit that
may be selected areas follows:
00 = 5 bits
01 = 6 bits
10 = 7 bits
11 = 8 bits
Reset Value: 0x0

Bits Name R/W Description

102 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

MCR
● Name: Modem Control Register
● Size: 32 bits
● Address Offset: 0x10
● Read/write access: read/write

Bits Name R/W Description

31:7 Reserved and read as zero

6 SIRE R/W SIR Mode Enable. Writeable only when SIR_MODE == Enabled, always
readable. This is used to enable/disable the IrDA SIR Mode features as
described in “IrDA 1.0 SIR Protocol” on page 47.
0 = IrDA SIR Mode disabled
1 = IrDA SIR Mode enabled
Reset Value: 0x0

5 AFCE R/W Auto Flow Control Enable. Writeable only when AFCE_MODE == Enabled,
always readable. When FIFOs are enabled and the Auto Flow Control Enable
(AFCE) bit is set, Auto Flow Control features are enabled as described in
“Auto Flow Control” on page 51.
0 = Auto Flow Control Mode disabled
1 = Auto Flow Control Mode enabled
Reset Value: 0x0

4 LoopBack
(or LB)

R/W LoopBack Bit. This is used to put the UART into a diagnostic mode for test
purposes.
If operating in UART mode (SIR_MODE != Enabled or not active, MCR[6]
set to zero), data on the sout line is held high, while serial data output is
looped back to the sin line, internally. In this mode all the interrupts are fully
functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n,
ri_n, dcd_n) are disconnected and the modem control outputs (dtr_n, rts_n,
out1_n, out2_n) are looped back to the inputs, internally.
If operating in infrared mode (SIR_MODE == Enabled AND active, MCR[6]
set to one), data on the sir_out_n line is held low, while serial data output is
inverted and looped back to the sir_in line.
Reset Value: 0x0

Reserved
SIRE

AFCE
LB

OUT2
OUT1

RTS

31:7 56 2 14 03

DTR

January 20, 2006 Synopsys, Inc. 103

DesignWare DW_apb_uart Databook Chapter 6: Registers

3 OUT2 R/W OUT2. This is used to directly control the user-designated Output2 (out2_n)
output. The value written to this location is inverted and driven out on
out2_n, that is:
0 = out2_n de-asserted (logic 1)
1 = out2_n asserted (logic 0)
Note that in Loopback mode (MCR[4] set to one), the out2_n output is held
inactive high while the value of this location is internally looped back to an
input.
Reset Value: 0x0

2 OUT1 R/W OUT1. This is used to directly control the user-designated Output1 (out1_n)
output. The value written to this location is inverted and driven out on
out1_n, that is:
0 = out1_n de-asserted (logic 1)
1 = out1_n asserted (logic 0)
Note that in Loopback mode (MCR[4] set to one), the out1_n output is held
inactive high while the value of this location is internally looped back to an
input.
Reset Value: 0x0

1 RTS R/W Request to Send. This is used to directly control the Request to Send (rts_n)
output. The Request To Send (rts_n) output is used to inform the modem or
data set that the UART is ready to exchange data.
When Auto RTS Flow Control is not enabled (MCR[5] set to zero), the rts_n
signal is set low by programming MCR[1] (RTS) to a high.In Auto Flow
Control, AFCE_MODE == Enabled and active (MCR[5] set to one) and
FIFOs enable (FCR[0] set to one), the rts_n output is controlled in the same
way, but is also gated with the receiver FIFO threshold trigger (rts_n is
inactive high when above the threshold). The rts_n signal is de-asserted when
MCR[1] is set low.
Note that in Loopback mode (MCR[4] set to one), the rts_n output is held
inactive high while the value of this location is internally looped back to an
input.
Reset Value: 0x0

0 DTR R/W Data Terminal Ready. This is used to directly control the Data Terminal
Ready (dtr_n) output. The value written to this location is inverted and driven
out on dtr_n, that is:
0 = dtr_n de-asserted (logic 1)
1 = dtr_n asserted (logic 0)
The Data Terminal Ready output is used to inform the modem or data set that
the UART is ready to establish communications. Note that in Loopback
mode (MCR[4] set to one), the dtr_n output is held inactive high while the
value of this location is internally looped back to an input.
Reset Value: 0x0

Bits Name R/W Description

104 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

LSR
● Name: Line Status Register
● Size: 32 bits
● Address Offset: 0x14
● Read/write access: read-only

Bits Name R/W Description

31:8 Reserved and read as zero

7 RFE R Receiver FIFO Error bit. This bit is only relevant when FIFO_MODE != NONE
AND FIFOs are enabled (FCR[0] set to one). This is used to indicate if there is at
least one parity error, framing error, or break indication in the FIFO.
0 = no error in RX FIFO
1 = error in RX FIFO
This bit is cleared when the LSR is read and the character with the error is at the
top of the receiver FIFO and there are no subsequent errors in the FIFO.
Reset Value: 0x0

6 TEMT R Transmitter Empty bit. If in FIFO mode (FIFO_MODE != NONE) and FIFOs
enabled (FCR[0] set to one), this bit is set whenever the Transmitter Shift
Register and the FIFO are both empty. If in non-FIFO mode or FIFOs are
disabled, this bit is set whenever the Transmitter Holding Register and the
Transmitter Shift Register are both empty.
Reset Value: 0x1

5 THRE R Transmit Holding Register Empty bit. If THRE_MODE_USER == Disabled or
THRE mode is disabled (IER[7] set to zero) and regardless of FIFO's being
implemented/enabled or not, this bit indicates that the THR or TX FIFO is
empty.
This bit is set whenever data is transferred from the THR or TX FIFO to the
transmitter shift register and no new data has been written to the THR or TX
FIFO. This also causes a THRE Interrupt to occur, if the THRE Interrupt is
enabled. If THRE_MODE_USER == Enabled AND FIFO_MODE != NONE
and both modes are active (IER[7] set to one and FCR[0] set to one
respectively), the functionality is switched to indicate the transmitter FIFO is
full, and no longer controls THRE interrupts, which are then controlled by the
FCR[5:4] threshold setting.
For more details, see “Programmable THRE Interrupt” on page 54.
Reset Value: 0x1

Reserved
RFE

TEMT
THRE

BI
FE
PE

31:8 56 2 14 03

OE

7

DR

January 20, 2006 Synopsys, Inc. 105

DesignWare DW_apb_uart Databook Chapter 6: Registers

4 BI R Break Interrupt bit. This is used to indicate the detection of a break sequence on
the serial input data.
If in UART mode (SIR_MODE == Disabled), it is set whenever the serial input,
sin, is held in a logic '0' state for longer than the sum of start time + data bits +
parity + stop bits.
If in infrared mode (SIR_MODE == Enabled), it is set whenever the serial input,
sir_in, is continuously pulsed to logic '0' for longer than the sum of start time +
data bits + parity + stop bits. A break condition on serial input causes one and
only one character, consisting of all zeros, to be received by the UART.
In the FIFO mode, the character associated with the break condition is carried
through the FIFO and is revealed when the character is at the top of the FIFO.
Reading the LSR clears the BI bit. In the non-FIFO mode, the BI indication
occurs immediately and persists until the LSR is read.
Reset Value: 0x0

3 FE R Framing Error bit. This is used to indicate the occurrence of a framing error in
the receiver. A framing error occurs when the receiver does not detect a valid
STOP bit in the received data.
In the FIFO mode, since the framing error is associated with a character
received, it is revealed when the character with the framing error is at the top of
the FIFO. When a framing error occurs, the UART tries to resynchronize. It does
this by assuming that the error was due to the start bit of the next character and
then continues receiving the other bit i.e. data, and/or parity and stop. It should
be noted that the Framing Error (FE) bit (LSR[3]) is set if a break interrupt has
occurred, as indicated by Break Interrupt (BI) bit (LSR[4]).
0 = no framing error
1 = framing error
Reading the LSR clears the FE bit.
Reset Value: 0x0

2 PE R Parity Error bit. This is used to indicate the occurrence of a parity error in the
receiver if the Parity Enable (PEN) bit (LCR[3]) is set.
In the FIFO mode, since the parity error is associated with a character received, it
is revealed when the character with the parity error arrives at the top of the FIFO.
It should be noted that the Parity Error (PE) bit (LSR[2]) is set if a break
interrupt has occurred, as indicated by Break Interrupt (BI) bit (LSR[4]).
0 = no parity error
1 = parity error
Reading the LSR clears the PE bit.
Reset Value: 0x0

Bits Name R/W Description

106 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

1 OE R Overrun error bit. This is used to indicate the occurrence of an overrun error.
This occurs if a new data character was received before the previous data was
read.
In the non-FIFO mode, the OE bit is set when a new character arrives in the
receiver before the previous character was read from the RBR. When this
happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error
occurs when the FIFO is full and a new character arrives at the receiver. The data
in the FIFO is retained and the data in the receive shift register is lost.
0 = no overrun error
1 = overrun error
Reading the LSR clears the OE bit.
Reset Value: 0x0

0 DR R Data Ready bit. This is used to indicate that the receiver contains at least one
character in the RBR or the receiver FIFO.
0 = no data ready
1 = data ready
This bit is cleared when the RBR is read in non-FIFO mode, or when the receiver
FIFO is empty, in FIFO mode.
Reset Value: 0x0

Bits Name R/W Description

January 20, 2006 Synopsys, Inc. 107

DesignWare DW_apb_uart Databook Chapter 6: Registers

MSR
● Name: Modem Status Register
● Size: 32 bits
● Address Offset: 0x18
● Read/write access: read-only

Whenever bits 0, 1, 2 or 3 are set to logic one, to indicate a change on the modem control inputs, a
modem status interrupt is generated if enabled through the IER, regardless of when the change
occurred. Since the delta bits (bits 0, 1, 3) can get set after a reset if their respective modem signals are
active (see individual bits for details), a read of the MSR after reset can be performed to prevent
unwanted interrupts.

Bits Name R/W Description

31:8 Reserved and read as zero

7 DCD R Data Carrier Detect. This is used to indicate the current state of the modem
control line dcd_n. This bit is the complement of dcd_n. When the Data Carrier
Detect input (dcd_n) is asserted it is an indication that the carrier has been
detected by the modem or data set.
0 = dcd_n input is de-asserted (logic 1)
1 = dcd_n input is asserted (logic 0)
In Loopback Mode (MCR[4] set to one), DCD is the same as MCR[3] (Out2).
Reset Value: 0x0

6 RI R Ring Indicator. This is used to indicate the current state of the modem control line
ri_n. This bit is the complement of ri_n. When the Ring Indicator input (ri_n) is
asserted it is an indication that a telephone ringing signal has been received by the
modem or data set.
0 = ri_n input is de-asserted (logic 1)
1 = ri_n input is asserted (logic 0)
In Loopback Mode (MCR[4] set to one), RI is the same as MCR[2] (Out1).
Reset Value: 0x0

Reserved
DCD

RI
DSR
CTS

DDCD
TERI

31:8 56 2 14 03

DDSR

7

DCTS

108 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

5 DSR R Data Set Ready. This is used to indicate the current state of the modem control
line dsr_n. This bit is the complement of dsr_n. When the Data Set Ready input
(dsr_n) is asserted it is an indication that the modem or data set is ready to
establish communications with the DW_apb_uart.
0 = dsr_n input is de-asserted (logic 1)
1 = dsr_n input is asserted (logic 0)
In Loopback Mode (MCR[4] set to one), DSR is the same as MCR[0] (DTR).
Reset Value: 0x0

4 CTS R Clear to Send. This is used to indicate the current state of the modem control line
cts_n. This bit is the complement of cts_n. When the Clear to Send input (cts_n)
is asserted it is an indication that the modem or data set is ready to exchange data
with the DW_apb_uart.
0 = cts_n input is de-asserted (logic 1)
1 = cts_n input is asserted (logic 0)
In Loopback Mode (MCR[4] = 1), CTS is the same as MCR[1] (RTS).
Reset Value: 0x0

3 DDCD R Delta Data Carrier Detect. This is used to indicate that the modem control line
dcd_n has changed since the last time the MSR was read.
0 = no change on dcd_n since last read of MSR
1 = change on dcd_n since last read of MSR
Reading the MSR clears the DDCD bit. In Loopback Mode (MCR[4] = 1),
DDCD reflects changes on MCR[3] (Out2).
Note, if the DDCD bit is not set and the dcd_n signal is asserted (low) and a reset
occurs (software or otherwise), then the DDCD bit is set when the reset is
removed if the dcd_n signal remains asserted.
Reset Value: 0x0

2 TERI R Trailing Edge of Ring Indicator. This is used to indicate that a change on the input
ri_n (from an active-low to an inactive-high state) has occurred since the last time
the MSR was read.
0 = no change on ri_n since last read of MSR
1 = change on ri_n since last read of MSR
Reading the MSR clears the TERI bit. In Loopback Mode (MCR[4] = 1), TERI
reflects when MCR[2] (Out1) has changed state from a high to a low.
Reset Value: 0x0

1 DDSR R Delta Data Set Ready. This is used to indicate that the modem control line dsr_n
has changed since the last time the MSR was read.
0 = no change on dsr_n since last read of MSR
1 = change on dsr_n since last read of MSR
Reading the MSR clears the DDSR bit. In Loopback Mode (MCR[4] = 1), DDSR
reflects changes on MCR[0] (DTR).
Note, if the DDSR bit is not set and the dsr_n signal is asserted (low) and a reset
occurs (software or otherwise), then the DDSR bit is set when the reset is
removed if the dsr_n signal remains asserted.
Reset Value: 0x0

Bits Name R/W Description

January 20, 2006 Synopsys, Inc. 109

DesignWare DW_apb_uart Databook Chapter 6: Registers

SCR
● Name: Scratchpad Register
● Size: 32 bits
● Address Offset: 0x1C
● Read/write access: read/write

0 DCTS R Delta Clear to Send. This is used to indicate that the modem control line cts_n has
changed since the last time the MSR was read.
0 = no change on ctsdsr_n since last read of MSR
1 = change on ctsdsr_n since last read of MSR
Reading the MSR clears the DCTS bit. In Loopback Mode (MCR[4] = 1), DCTS
reflects changes on MCR[1] (RTS).
Note, if the DCTS bit is not set and the cts_n signal is asserted (low) and a reset
occurs (software or otherwise), then the DCTS bit is set when the reset is
removed if the cts_n signal remains asserted.
Reset Value: 0x0

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Scratchpad
Register

R/W This register is for programmers to use as a temporary storage space. It has
no defined purpose in the DW_apb_uart.
Reset Value: 0x0

Bits Name R/W Description

Reserved

31:8

Scratchpad Register

7:0

110 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

LPDLL
● Name: Low Power Divisor Latch Low Register
● Size: 32 bits
● Address Offset: 0x1C
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have SIR low-power reception
capabilities implemented (SIR_LP_RX = Yes). If SIR low-power reception capabilities are not
implemented, this register does not exist and reading from thsi register address returns zero.

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 LPDLL R/W This register makes up the lower 8-bits of a 16-bit, read/write, Low Power
Divisor Latch register that contains the baud rate divisor for the UART,
which must give a baud rate of 115.2K. This is required for SIR Low Power
(minimum pulse width) detection at the receiver. This register may only be
accessed when the DLAB bit (LCR[7]) is set and the UART is not busy
(USR[0]) is 0). The output low-power baud rate is equal to the serial clock
(sclk) frequency divided by sixteen times the value of the baud rate divisor,
as follows:
Low power baud rate = (serial clock frequency)/(16* divisor)
Therefore, a divisor must be selected to give a baud rate of 115.2K.
NOTE: When the Low Power Divisor Latch registers (LPDLL and LPDLH)
are set to 0, the low-power baud clock is disabled and no low-power pulse
detection (or any pulse detection) occurs at the receiver. Also, once the
LPDLL is set, at least eight clock cycles of the slowest DW_apb_uart clock
should be allowed to pass before transmitting or receiving data.
Reset Value: 0x0

Reserved

31:8

Low Power Divisor Latch Low Register

7:0

January 20, 2006 Synopsys, Inc. 111

DesignWare DW_apb_uart Databook Chapter 6: Registers

LPDLH
● Name: Low Power Divisor Latch High Register
● Size: 32 bits
● Address Offset: 0x1C
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have SIR low-power reception
capabilities implemented (SIR_LP_RX = Yes). If SIR low-power reception capabilities are not
implemented, this register does not exist and reading from thsi register address returns zero.

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 LPDLH R/W This register makes up the upper 8-bits of a 16-bit, read/write, Low Power
Divisor Latch register that contains the baud rate divisor for the UART,
which must give a baud rate of 115.2K. This is required for SIR Low Power
(minimum pulse width) detection at the receiver. This register may only be
accessed when the DLAB bit (LCR[7]) is set and the UART is not busy
(USR[0]) is 0). The output low-power baud rate is equal to the serial clock
(sclk) frequency divided by sixteen times the value of the baud rate divisor,
as follows:
Low power baud rate = (serial clock frequency)/(16* divisor)
Therefore, a divisor must be selected to give a baud rate of 115.2K.
NOTE: When the Low Power Divisor Latch registers (LPDLL and LPDLH)
are set to 0, the low-power baud clock is disabled and no low-power pulse
detection (or any pulse detection) occurs at the receiver. Also, once the
LPDLH is set, at least eight clock cycles of the slowest DW_apb_uart clock
should be allowed to pass before transmitting or receiving data.
Reset Value: 0x0

Reserved

31:8

Low Power Divisor Latch High Register

7:0

112 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

SRBR
● Name: Shadow Receive Buffer Register
● Size: 32 bits
● Address Offset: 0x30 - 0x6C
● Read/write access: read-only

This register is only valid when the DW_apb_uart is configured to have additional shadow registers
implemented (SHADOW == YES). If shadow registers are not implemented, this register does not
exist and reading from this register address returns zero.

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Shadow
Receive
Buffer
Register

R This is a shadow register for the RBR and has been allocated sixteen 32-bit
locations so as to accommodate burst accesses from the master. This
register contains the data byte received on the serial input port (sin) in
UART mode or the serial infrared input (sir_in) in infrared mode. The data
in this register is valid only if the Data Ready (DR) bit in the Line status
Register (LSR) is set.
If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are disabled
(FCR[0] set to zero), the data in the RBR must be read before the next data
arrives, otherwise it is overwritten, resulting in an overrun error.
If in FIFO mode (FIFO_MODE != NONE) and FIFOs are enabled (FCR[0]
set to one), this register accesses the head of the receive FIFO. If the
receive FIFO is full and this register is not read before the next data
character arrives, then the data already in the FIFO are preserved, but any
incoming data is lost. An overrun error also occurs.
Reset Value: 0x0

Reserved

31:8

Shadow Receive Buffer Register

7:0

January 20, 2006 Synopsys, Inc. 113

DesignWare DW_apb_uart Databook Chapter 6: Registers

STHR
● Name: Shadow Transmit Holding Register
● Size: 32 bits
● Address Offset: 0x30 - 0x6C
● Read/write access: write

This register is only valid when the DW_apb_uart is configured to have additional shadow registers
implemented (SHADOW == YES). If shadow registers are not implemented, this register does not
exist, and reading from this register address returns zero.

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Shadow
Transmit
Holding
Register

W This is a shadow register for the THR and has been allocated sixteen 32-bit
locations so as to accommodate burst accesses from the master. This
register contains data to be transmitted on the serial output port (sout) in
UART mode or the serial infrared output (sir_out_n) in infrared mode. Data
should only be written to the THR when the THR Empty (THRE) bit
(LSR[5]) is set.
If in non-FIFO mode or FIFOs are disabled (FCR[0] set to zero) and THRE
is set, writing a single character to the THR clears the THRE. Any
additional writes to the THR before the THRE is set again causes the THR
data to be overwritten.
If in FIFO mode and FIFOs are enabled (FCR[0] set to one) and THRE is
set, x number of characters of data may be written to the THR before the
FIFO is full. The number x (default=16) is determined by the value of FIFO
Depth that you set during configuration. Any attempt to write data when the
FIFO is full results in the write data being lost.
Reset Value: 0x0

Reserved

31:8

Shadow Transmit Holding Register

7:0

114 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

FAR
● Name: FIFO Access Register
● Size: 32 bits
● Address Offset: 0x70
● Read/write access: read/write

Bits Name R/W Description

31:1 Reserved and read as zero

0 FIFO Access
Register

R/W Writes have no effect when FIFO_ACCESS == No, always readable. This
register is use to enable a FIFO access mode for testing, so that the receive
FIFO can be written by the master and the transmit FIFO can be read by the
master when FIFOs are implemented and enabled. When FIFOs are not
implemented or not enabled it allows the RBR to be written by the master
and the THR to be read by the master.
0 = FIFO access mode disabled
1 = FIFO access mode enabled
Note, that when the FIFO access mode is enabled/disabled, the control
portion of the receive FIFO and transmit FIFO is reset and the FIFOs are
treated as empty.
Reset Value: 0x0

Reserved

31:1

FIFO Access Register

0

January 20, 2006 Synopsys, Inc. 115

DesignWare DW_apb_uart Databook Chapter 6: Registers

TFR
● Name: Transmit FIFO Read
● Size: 32 bits
● Address Offset: 0x74
● Read/write access: read-only

This register is only valid when the DW_apb_uart is configured to have the FIFO access test mode
available (FIFO_ACCESS == YES). If not configured, this register does not exist and reading from this
register address returns zero.

Bits Name R/W Description

31:8 Reserved and read as zero

7:0 Transmit
FIFO Read

R Transmit FIFO Read. These bits are only valid when FIFO access mode is
enabled (FAR[0] is set to one).
When FIFOs are implemented and enabled, reading this register gives the
data at the top of the transmit FIFO. Each consecutive read pops the
transmit FIFO and gives the next data value that is currently at the top of
the FIFO.
When FIFOs are not implemented or not enabled, reading this register
gives the data in the THR.
Reset Value: 0x0

Reserved

31:8

Transmit FIFO Read

7:0

116 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

RFW
● Name: Receive FIFO Write
● Size: 32 bits
● Address Offset: 0x78
● Read/write access: write-only

This register is only valid when the DW_apb_uart is configured to have the FIFO access test mode
available (FIFO_ACCESS == YES). If not configured, this register does not exist and reading from this
register address returns zero.

Bits Name R/W Description

31:10 Reserved and read as zero

9 RFFE W Receive FIFO Framing Error. These bits are only valid when FIFO access
mode is enabled (FAR[0] is set to one). When FIFOs are implemented and
enabled, this bit is used to write framing error detection information to the
receive FIFO. When FIFOs are not implemented or not enabled, this bit is used
to write framing error detection information to the RBR.
Reset Value: 0x0

8 RFPE W Receive FIFO Parity Error. These bits are only valid when FIFO access mode
is enabled (FAR[0] is set to one). When FIFOs are implemented and enabled,
this bit is used to write parity error detection information to the receive FIFO.
When FIFOs are not implemented or not enabled, this bit is used to write
parity error detection information to the RBR.
Reset Value: 0x0

7:0 RFWD W Receive FIFO Write Data. These bits are only valid when FIFO access mode is
enabled (FAR[0] is set to one). When FIFOs are implemented and enabled, the
data that is written to the RFWD is pushed into the receive FIFO. Each
consecutive write pushes the new data to the next write location in the receive
FIFO. When FIFOs are not implemented or not enabled, the data that is written
to the RFWD is pushed into the RBR.
Reset Value: 0x0

Reserved
RFFE
RFPE

RFWD

31:10 9 8 7:0

January 20, 2006 Synopsys, Inc. 117

DesignWare DW_apb_uart Databook Chapter 6: Registers

USR
● Name: UART Status Register
● Size: 32 bits
● Address Offset: 0x7C
● Read/write access: read-only

Bits Name R/W Description

31:5 Reserved and read as zero

4 RFF R Receive FIFO Full. This bit is only valid when FIFO_STAT == YES. This is
used to indicate that the receive FIFO is completely full.
0 = Receive FIFO not full
1 = Receive FIFO Full
This bit is cleared when the RX FIFO is no longer full.
Reset Value: 0x0

3 RFNE R Receive FIFO Not Empty. This bit is only valid when FIFO_STAT == YES. This
is used to indicate that the receive FIFO contains one or more entries.
0 = Receive FIFO is empty
1 = Receive FIFO is not empty
This bit is cleared when the RX FIFO is empty.
Reset Value: 0x0

2 TFE R Transmit FIFO Empty. This bit is only valid when FIFO_STAT == YES. This is
used to indicate that the transmit FIFO is completely empty.
0 = Transmit FIFO is not empty
1 = Transmit FIFO is empty
This bit is cleared when the TX FIFO is no longer empty.
Reset Value: 0x1

1 TFNF R Transmit FIFO Not Full. This bit is only valid when FIFO_STAT == YES. This
is used to indicate that the transmit FIFO in not full.
0 = Transmit FIFO is full
1 = Transmit FIFO is not full
This bit is cleared when the TX FIFO is full.
Reset Value: 0x1

Reserved
RFF

RFNE
TFE

TFNF
BUSY

31:5 4 3 2 1 0

118 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

TFL
● Name: Transmit FIFO Level
● Size: FIFO_ADDR_WIDTH + 1
● Address Offset: 0x80
● Read/write access: read-only

This register is only valid when the DW_apb_uart is configured to have additional FIFO status registers
implemented (FIFO_STAT == YES). If status registers are not implemented, this register does not exist
and reading from this register address returns zero.

0 BUSY R UART Busy. This is indicates that a serial transfer is in progress, when cleared
indicates that the DW_apb_uart is idle or inactive.
0 = DW_apb_uart is idle or inactive
1 = DW_apb_uart is busy (actively transferring data)
NOTE: It is possible for the UART Busy bit to be cleared even though a new
character may have been sent from another device. That is, if the DW_apb_uart
has no data in THR and RBR and there is no transmission in progress and a start
bit of a new character has just reached the DW_apb_uart. This is due to the fact
that a valid start is not seen until the middle of the bit period and this duration is
dependent on the baud divisor that has been programmed. If a second system
clock has been implemented (CLOCK_MODE == Enabled), the assertion of this
bit is also delayed by several cycles of the slower clock.
Reset Value: 0x0

Bits Name R/W Description

31:FIFO_ADDR_WIDTH + 1 Reserved and read as zero

FIFO_ADDR_WIDTH:0 Transmit
FIFO
Level

R Transmit FIFO Level. This is indicates the number
of data entries in the transmit FIFO.
Reset Value: 0x0

Bits Name R/W Description

Reserved

31:FIFO_ADDR_WIDTH +1

Transmit FIFO Level

FIFO_ADDR_WIDTH:0

January 20, 2006 Synopsys, Inc. 119

DesignWare DW_apb_uart Databook Chapter 6: Registers

RFL
● Name: Receive FIFO Level
● Size: FIFO_ADDR_WIDTH + 1
● Address Offset: 0x84
● Read/write access: read-only

This register is only valid when the DW_apb_uart is configured to have additional FIFO status registers
implemented (FIFO_STAT == YES). If status registers are not implemented, this register does not exist
and reading from this register address returns zero.

Bits Name R/W Description

31:FIFO_ADDR_WIDTH + 1 Reserved and read as zero

FIFO_ADDR_WIDTH:0 Receive
FIFO
Level

R Receive FIFO Level. This is indicates the number
of data entries in the receive FIFO.
Reset Value: 0x0

Reserved

31:FIFO_ADDR_WIDTH +1

Receive FIFO Level

FIFO_ADDR_WIDTH:0

120 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

SRR
● Name: Software Reset Register
● Size: 32 bits
● Address Offset: 0x88
● Read/write access: write-only

This register is only valid when the DW_apb_uart is configured to have additional shadow registers
implemented (SHADOW == YES). If shadow registers are not implemented, this register does not
exist and reading from this register address returns zero.

Bits Name R/W Description

31:3 Reserved and read as zero

2 XFR W XMIT FIFO Reset. This is a shadow register for the XMIT FIFO Reset bit
(FCR[2]). This can be used to remove the burden on software having to store
previously written FCR values (which are pretty static) just to reset the transmit
FIFO. This resets the control portion of the transmit FIFO and treats the FIFO as
empty. This also de-asserts the DMA TX request and single signals when
additional DMA handshaking signals are selected (DMA_EXTRA == YES).
Note that this bit is 'self-clearing'. It is not necessary to clear this bit.
Reset Value: 0x0
Dependencies: Writes have no effect when FIFO_MODE == None.

1 RFR W RCVR FIFO Reset. This is a shadow register for the RCVR FIFO Reset bit
(FCR[1]). This can be used to remove the burden on software having to store
previously written FCR values (which are pretty static) just to reset the receive
FIFO This resets the control portion of the receive FIFO and treats the FIFO as
empty. This also de-asserts the DMA RX request and single signals when
additional DMA handshaking signals are selected (DMA_EXTRA == YES).
Note that this bit is 'self-clearing'. It is not necessary to clear this bit.
Reset Value: 0x0
Dependencies: Writes have no effect when FIFO_MODE == None.

0 UR W UART Reset. This asynchronously resets the DW_apb_uart and synchronously
removes the reset assertion. For a two clock implementation both pclk and sclk
domains are reset.
Reset Value: 0x0

Reserved
XFR
RFR

UR

31:3 2 1 0

January 20, 2006 Synopsys, Inc. 121

DesignWare DW_apb_uart Databook Chapter 6: Registers

SRTS
● Name: Shadow Request to Send
● Size: 32 bits
● Address Offset: 0x8C
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have additional shadow registers
implemented (SHADOW == YES). If shadow registers are not implemented, this register does not
exist and reading from this register address returns zero.

Bits Name R/W Description

31:1 Reserved and read as zero

0 Shadow
Request to
Send

R/W Shadow Request to Send. This is a shadow register for the RTS bit
(MCR[1]), this can be used to remove the burden of having to
performing a read-modify-write on the MCR. This is used to directly
control the Request to Send (rts_n) output. The Request To Send (rts_n)
output is used to inform the modem or data set that the DW_apb_uart is
ready to exchange data.
When Auto RTS Flow Control is not enabled (MCR[5] = 0), the rts_n
signal is set low by programming MCR[1] (RTS) to a high.
In Auto Flow Control, AFCE_MODE == Enabled and active (MCR[5]
= 1) and FIFOs enable (FCR[0] = 1), the rts_n output is controlled in the
same way, but is also gated with the receiver FIFO threshold trigger
(rts_n is inactive high when above the threshold).
Note that in Loopback mode (MCR[4] = 1), the rts_n output is held
inactive-high while the value of this location is internally looped back to
an input.
Reset Value: 0x0

Reserved

31:1

Shadow Request to Send

0

122 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

SBCR
● Name: Shadow Break Control Register
● Size: 32 bits
● Address Offset: 0x90
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have additional shadow registers
implemented (SHADOW == YES). If shadow registers are not implemented, this register does not
exist and reading from this register address returns zero.

Bits Name R/W Description

31:1 Reserved and read as zero

0 Shadow
Break
Control
Register

R/W Shadow Break Control Bit. This is a shadow register for the Break bit
(LCR[6]), this can be used to remove the burden of having to performing a
read modify write on the LCR. This is used to cause a break condition to be
transmitted to the receiving device.
If set to one the serial output is forced to the spacing (logic 0) state. When not
in Loopback Mode, as determined by MCR[4], the sout line is forced low until
the Break bit is cleared.
If SIR_MODE == Enabled and active (MCR[6] = 1) the sir_out_n line is
continuously pulsed. When in Loopback Mode, the break condition is
internally looped back to the receiver.
Reset Value: 0x0

Reserved

31:1

Shadow Break Control Register

0

January 20, 2006 Synopsys, Inc. 123

DesignWare DW_apb_uart Databook Chapter 6: Registers

SDMAM
● Name: Shadow DMA Mode
● Size: 32 bits
● Address Offset: 0x94
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have additional FIFO registers
implemented (FIFO_MODE != None) and additional shadow registers implemented (SHADOW ==
YES). If these registers are not implemented, this register does not exist and reading from this register
address returns zero.

Bits Name R/W Description

31:1 Reserved and read as zero

0 Shadow
DMA
Mode

R/W Shadow DMA Mode. This is a shadow register for the DMA mode bit
(FCR[3]). This can be used to remove the burden of having to store the
previously written value to the FCR in memory and having to mask this value
so that only the DMA Mode bit gets updated. This determines the DMA
signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals
when additional DMA handshaking signals are not selected (DMA_EXTRA
== NO).
0 = mode 0
1 = mode 1
Reset Value: 0x0

Reserved

31:1

Shadow DMA Mode

0

124 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

SFE
● Name: Shadow FIFO Enable
● Size: 32 bits
● Address Offset: 0x98
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have additional FIFO registers
implemented (FIFO_MODE != None) and additional shadow registers implemented (SHADOW ==
YES). If these registers are not implemented, this register does not exist and reading from this register
address returns zero.

Bits Name R/W Description

31:1 Reserved and read as zero

0 Shadow
FIFO
Enable

R/W Shadow FIFO Enable. This is a shadow register for the FIFO enable bit
(FCR[0]). This can be used to remove the burden of having to store the
previously written value to the FCR in memory and having to mask this
value so that only the FIFO enable bit gets updated.This enables/disables the
transmit (XMIT) and receive (RCVR) FIFOs. If this bit is set to zero
(disabled) after being enabled then both the XMIT and RCVR controller
portion of FIFOs are reset.
Reset Value: 0x0

Reserved

31:1

Shadow FIFO Enable

0

January 20, 2006 Synopsys, Inc. 125

DesignWare DW_apb_uart Databook Chapter 6: Registers

SRT
● Name: Shadow RCVR Trigger
● Size: 32 bits
● Address Offset: 0x9C
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have additional FIFO registers
implemented (FIFO_MODE != None) and additional shadow registers implemented (SHADOW ==
YES). If these registers are not implemented, this register does not exist and reading from this register
address returns zero.

Bits Name R/W Description

31:2 Reserved and read as zero

1:0 Shadow
RCVR
Trigger

R/W Shadow RCVR Trigger. This is a shadow register for the RCVR trigger bits
(FCR[7:6]). This can be used to remove the burden of having to store the
previously written value to the FCR in memory and having to mask this
value so that only the RCVR trigger bit gets updated.
This is used to select the trigger level in the receiver FIFO at which the
Received Data Available Interrupt is generated. It also determines when the
dma_rx_req_n signal is asserted when DMA Mode (FCR[3]) = 1. The
following trigger levels are supported:
00 = 1 character in the FIFO
01 = FIFO ¼ full
10 = FIFO ½ full
11 = FIFO 2 less than full
Reset Value: 0x0

Reserved

31:2

Shadow RCVR Trigger

1:0

126 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

STET
● Name: Shadow TX Empty Trigger
● Size: 32 bits
● Address Offset: 0xA0
● Read/write access: read/write

This register is only valid when the DW_apb_uart is configured to have FIFOs implemented
(FIFO_MODE != NONE) and THRE interrupt support implemented (THRE_MODE_USER ==
Enabled) and additional shadow registers implemented (SHADOW == YES). If FIFOs are not
implemented or THRE interrupt support is not implemented or shadow registers are not implemented,
this register does not exist and reading from this register address returns zero.

Bits Name R/W Description

31:2 Reserved and read as zero

1:0 Shadow
TX Empty
Trigger

R/W Shadow TX Empty Trigger. This is a shadow register for the TX empty
trigger bits (FCR[5:4]). This can be used to remove the burden of having to
store the previously written value to the FCR in memory and having to mask
this value so that only the TX empty trigger bit gets updated.
This is used to select the empty threshold level at which the THRE Interrupts
are generated when the mode is active. The following trigger levels are
supported:
00 = FIFO empty
01 = 2 characters in the FIFO
10 = FIFO ¼ full
11 = FIFO ½ full
Reset Value: 0x0
Dependencies: Writes have no effect when THRE_MODE_USER ==
Disabled.

Reserved

31:2

Shadow TX Empty Trigger

1:0

January 20, 2006 Synopsys, Inc. 127

DesignWare DW_apb_uart Databook Chapter 6: Registers

HTX
● Name: Halt TX
● Size: 32 bits
● Address Offset: 0xA4
● Read/write access: read/write

DMASA
● Name: DMA Software Acknowledge
● Size: 32 bits
● Address Offset: 0xA8
● Read/write access: read/write

Bits Name R/W Description

31:1 Reserved and read as zero

0 Halt TX R/W This register is use to halt transmissions for testing, so that the transmit FIFO
can be filled by the master when FIFOs are implemented and enabled.
0 = Halt TX disabled
1 = Halt TX enabled
Note, if FIFOs are implemented and not enabled, the setting of the halt TX
register has no effect on operation.
Reset Value: 0x0
Dependencies: Writes have no effect when FIFO_MODE == None.

Bits Name R/W Description

31:1 Reserved and read as zero

0 DMA Software
Acknowledge

W This register is use to perform a DMA software acknowledge if a
transfer needs to be terminated due to an error condition. For example, if
the DMA disables the channel, then the DW_apb_uart should clear its
request. This causes the TX request, TX single, RX request and RX
single signals to de-assert. Note that this bit is 'self-clearing'. It is not
necessary to clear this bit.
Reset Value: 0x0
Dependencies: Writes have no effect when DMA_EXTRA == No.

Reserved

31:1

Halt TX

0

Reserved

31:1

DMA Software Acknowledge

0

128 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

CPR
● Name: Component Parameter Register
● Size: 32 bits
● Address Offset: 0xF4
● Read/write access: read-only
● Dependency: This register is only valid when the DW_apb_uart is configured to have the

Component Parameter register implemented (UART_ADD_ENCODED_PARAMS == YES). If
the Component Parameter register is not implemented, this register does not exist and reading from
this register address returns zero.

Bits Name R/W Description

31:24 Reserved and read as zero

23:16 FIFO_MODE R 0x00 = 0
0x01 = 16
0x02 = 32
to
0x80 = 2048
0x81- 0xff = reserved

15:14 Reserved and read as zero

13 DMA_EXTRA R 0 = FALSE
1 = TRUE

12 UART_ADD_ENCODED_PARAMS R 0 = FALSE
1 = TRUE

11 SHADOW R 0 = FALSE
1 = TRUE

10 FIFO_STAT R 0 = FALSE
1 = TRUE

Reserved
FIFO_MODE

Reserved

UART_ADD_ENCODED_PARAMS
SHADOW

FIFO_STAT
FIFO_ACCESS

31:24 78 4 3:26 1:05

NEW_FEAT

9

SIR_LP_MODE

23:16 15:14 101112

SIR_MODE
THRE_MODE
AFCE_MODE

Reserved
APB_DATA_WIDTH

13

DMA_EXTRA

January 20, 2006 Synopsys, Inc. 129

DesignWare DW_apb_uart Databook Chapter 6: Registers

UCV
● Name: UART Component Version
● Size: 32 bits
● Address Offset: 0xF8
● Read/write access: read-only
● Dependency: This register is only valid when the DW_apb_uart is configured to have additional

features implemented (ADDITIONAL_FEATURES == YES). If additional features are not
implemented, this register does not exist and reading from this register address returns zero.

9 FIFO_ACCESS R 0 = FALSE
1 = TRUE

8 ADDITIONAL_FEAT R 0 = FALSE
1 = TRUE

7 SIR_LP_MODE R 0 = FALSE
1 = TRUE

6 SIR_MODE R 0 = FALSE
1 = TRUE

5 THRE_MODE R 0 = FALSE
1 = TRUE

4 AFCE_MODE R 0 = FALSE
1 = TRUE

3:2 Reserved and read as zero

1:0 APB_DATA_WIDTH R 00 = 8 bits
01 = 16 bits
10 = 32 bits
11 = reserved

Bits Name R/W Description

31:0 UART
Component
Version

R ASCII value for each number in the version, followed by *. For
example 32_30_31_2A represents the version 2.01*
Reset Value: See the releases table in the DW_apb_uart Release
Notes.

Bits Name R/W Description

UART component version

31:0

130 Synopsys, Inc. January 20, 2006

Chapter 6: Registers DesignWare DW_apb_uart Databook

CTR
● Name: Component Type Register
● Size: 32 bits
● Address Offset: 0xFC
● Read/write access: read-only
● Dependency: This register is only valid when the DW_apb_uart is configured to have additional

features implemented (ADDITIONAL_FEATURES == YES). If additional features are not
implemented, this register does not exist and reading from this register address returns zero.

Bits Name R/W Description

31:0 Peripheral ID R This register contains the peripherals identification code.
Reset Value: 0x44570110

Peripheral ID

31:0

January 20, 2006 Synopsys, Inc. 131

DesignWare DW_apb_uart Databook Chapter 7: Programming the DW_apb_uart

7
Programming the DW_apb_uart

The following topics provide information necessary to program the DW_apb_uart.

Software Drivers
The family of DesignWare AMBA Synthesizable Components includes a Driver Kit for the
DW_apb_uart component. This low-level driver allows you to program a DW_apb_uart component
and integrate your code into a larger software system. The Driver Kit provides the following benefits to
IP designers:

● Proven method of access to DW_apb_uart minimizing usage errors
● Rapid software development with minimum overhead
● Detailed knowledge of DW_apb_uart register bit fields not required
● Easy integration of DW_apb_uart into existing software system
● Programming at register level eliminated

You must purchase a source code license (DWC-APB-Periph-Source) to use the DW_apb_uart Driver
Kit. However, you can access some Driver Kit files and documentation in $DESIGNWARE_HOME/
drivers/DW_apb_uart/latest. For more information about the Driver Kit, refer to the DW_apb_uart
Driver Kit User Guide. For more information about purchasing the source code license and obtaining a
download of the Driver Kit, contact Synopsys at designware@synopsys.com for details.

132 Synopsys, Inc. January 20, 2006

Chapter 7: Programming the DW_apb_uart DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 133

DesignWare DW_apb_uart Databook Chapter 8: Verification

8
Verification

This chapter provides an overview of the testbench and tests available for DW_apb_uart verification.
(Also see “Verification Environment Overview” on page 17). Once the DW_apb_uart has been
configured and the verification environment set up, simulations can be automatically ran.

For more information about running simulations for DW_apb_uart in Connect, refer to “Verify
Component” on page 37. For more information about verifying DW_apb_uart in coreConsultant, see
“Verifying the DW_apb_uart” on page 160.

Note
The DW_apb_uart verification testbench is built with DesignWare AMBA Verification IP
(VIP). Please make sure you have the supported version of the VIP components for this
release, otherwise, you may experience some tool compatibility problems. For more
information about supported tools in this release, refer to the following web page:

www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf

http://www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf

134 Synopsys, Inc. January 20, 2006

Chapter 8: Verification DesignWare DW_apb_uart Databook

Overview of DW_apb_uart Testbench
As illustrated in Figure 30, the DW_apb_uart Verilog testbench includes an instantiation of the design
under test (DUT), AHB and APB bus models, and a Vera shell.

Figure 30: DW_apb_uart Testbench

The DW_apb_uart testbench consists of the following:

● Vera Test – Responsible for enumerating the test conditions under which the DUT (UART) is
verified. These conditions steer the simulations in various aspects, such as the register settings of
the UART, the transfer direction (UART to SIO_TxRx, SIO_TxRx to UART, loopback) and length
(number of characters serially exchanged), number of iterations for a single test scenario,
simulation controls, and so on. All this information is randomly created and encapsulated in
several classes with associated Vera randomization and constraint constructs. This information is
also relayed to the other Vera components.

● Testbench API – Takes in the randomized test conditions and uses the relevant portions for
appropriate directing of the simulation controls, such as the number of iterations executed. It is
also responsible for ensuring that all test monitors are alerted and set up for the indicated test type,
as well as relaying information (in the form of class objects) to the two drivers (UartLocalClass,
UartRemoteClass) in order to execute the desired simulation behavior to effect; for example,
transfers to and from the DUT.

● DUT Driver, or UartLocalClass – Responsible for translating the information provided by the
Testbench API into the desired simulation behaviors. This Vera component ensures that
corresponding command and/or sequence of commands are issued to the AHB BFM to effect the
desired register settings, transferring of data, toggling of the modem interface signals, loopback

AHB
BFM

SIO

DUT
DW_apb_uart.v
(APB Slave 0)

Vera Tests
(test stimuli and results)

Scoreboard

Checkers

UartRemote
(VIP driver)

UartLocal
(DUT driver)

APB
BFM

DMA
BFM

SIO Txrx
models

Monitors

test_DW_apb_uart.v

= Vera shell

January 20, 2006 Synopsys, Inc. 135

DesignWare DW_apb_uart Databook Chapter 8: Verification

mode, interrupts, and so on in the DUT(UART). Since the information directing the required
simulations are shielded by UartLocalClass away from AHB BFM, revised versions of the latter
Vera component can be easily accommodated by updating UartLocalClass.

● VIP Driver, or UartRemoteClass – Performs a similar role to that of UartLocalClass, translating
the information provided by Testbench API into corresponding SIO_TxRx BFM commands in
order to effect the desired simulation behaviors. Note that controls complementary to that of the
UartLocalClass are performed in the UartRemoteClass, such that if the DUT performs transmits,
then the SIO_TxRx BFM attempts reception(s). UartRemoteClass also serves to shield the rest of
the verification environment from revised versions of this VIP component.

● AHB BFM – VIP harness BFM required to imitate as an AHB master. All actual register accesses
(reads and writes) required by a current test are performed using AHB BFM commands. Existing
class definitions for this BFM are re-used.

● DMA BFM – Exercises the DMA interface of the DUT/UARTv3.0. It behaves as another AHB
master, issuing commands to perform reads and writes from/to the UART. These activities are
coordinated within the UartLocalClass.

● Checkers – Examine the behavior of the DUT through the DUT signal interfaces, and evaluate the
outcome of the prescribed tests targeted at the DUT. The verification tests determine the degree to
which the DUT is verified, and is therefore linked to one (or more) test monitors in the test
environment. These Checkers operate independently of the main flow in the test code. This form of
messaging uses two classes, TestmonAlertClass and TestmonExecuteClass.

● SIOMonitor – Serial monitor VIP from the SIO VIP package. When appropriately parameterized,
the SIO_Mon examines the serial bit patterns exchanged between the DUT and the SIO_TxRx.

● SIOTxRx BFM – Vera model of a UART capable of serial data exchanges with any other UART.

● APB Slave BFM – Used to ensure that violations in the APB accesses are appropriately captured
and logged.

● Scoreboard – Tracks the data that are exchanged between the UART and the SIOTxrx models. This
allows verification of the actual contents transmitted and/or received on either side in either
direction.

136 Synopsys, Inc. January 20, 2006

Chapter 8: Verification DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 137

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

9
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment. The following sections discuss general
integration considerations for the slave interface of APB peripherals:

● “Reading and Writing from an APB Slave” on page 137
● “Write Timing Operation” on page 140
● “Read Timing Operation” on page 141
● “Accessing Top-level Constraints” on page 142
● “Coherency” on page 142

Reading and Writing from an APB Slave
When writing to and reading from DesignWare APB slaves, you should consider the following:

● The size of the APB peripheral should always be set equal to the size of the APB data bus, if
possible.

● The APB bus has no concept of a transfer size or a byte lane, unlike the DW_ahb.

● The APB slave subsystem is little endian; the DW_apb performs the conversion from a big-endian
AHB to the little-endian APB.

● All APB slave programming registers are aligned on 32-bit boundaries, irrespective of the APB
bus size.

● The maximum APB_DATA_WIDTH is 32 bits. Registers larger than this occupies more than one
location in the memory map.

● The DW_apb does not return any ERROR, SPLIT, or RETRY responses; it always returns an
OKAY response to the AHB.

● For all bus widths:

❍ In the case of a read transaction, registers less than the full bus width returns zeros in the
unused upper bits.

❍ Writing to bit locations larger than the register width does not have any effect. Only the
pertinent bits are written to the register.

● The APB slaves do not need the full 32-bit address bus, paddr. The slaves include the lower bits
even though they are not actually used in a 32- or 16-bit system.

138 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

Reading From Unused Locations
Reading from an unused location or unused bits in a particular register always returns zeros. Unlike an
AHB slave interface, which would return an error, there is no error mechanism in an APB slave and,
therefore, in the DW_apb.

The following sections show the relationship between the register map and the read/write operations
for the three possible APB_DATA_WIDTH values: 8-, 16-, and 32-bit APB buses.

Figure 31: Read/Write Locations for Different APB Bus Data Widths

31 0715 APB Address
nn00

nn04

nn08
nn09Register 3 [15:8] Register 3 [7:0]

Register 2 [15:8] Register 2 [7:0]

Register 1 [7:0]

Register 3 [31:24]
Register 3 [23:16]

nn05

nn0A
nn0B

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:16] Register 3 [15:0]

Register 2 [15:0]

Register 1 [7:0]

nn0A

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:0]

Register 2 [15:0]

Register 1 [7:0]

32-bit APB

16-bit APB

8-bit APB

January 20, 2006 Synopsys, Inc. 139

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

32-bit Bus System
For 32-bit bus systems, all programming registers can be read or written with one operation, as
illustrated in the previous figure.

Because all registers are on 32-bit boundaries, paddr[1:0] is not actually needed in the 32-bit bus case.
But these bits still exist in the configured code for usability purposes.

Note
If you write to an address location not on a 32-bit boundary, the bottom bits are
ignored/not used.

16-bit Bus System
For 16-bit bus systems, two scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 16 bits

In this case, the register can be read or written with one transaction. In the case of a read
transaction, registers less than 16 bits wide returns zeros in the un-used bits. Writing to bit
locations larger than the register width causes nothing to happen, i.e. only the pertinent bits are
written to the register.

2. The register to be written to or read from is >16 and <= 32 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to
read or write the register. The first transaction should read/write the lower two bytes (half-word)
and the second transaction the upper half-word.

Because the bus is reading a half-word at a time, paddr[0] is not actually needed in the 16-bit bus case.
But these bits still exist in the configured code for connectivity purposes.

Note
If you write to an address location not on a 16-bit boundary, the bottom bits are
ignored/not used.

140 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

8-bit Bus System
For 8-bit bus systems, three scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 8 bits

In this case, the register can be read or written with one transaction. In the case of a read
transaction, registers less than 8 bits wide returns zeros in the unused bits. Writing to bit locations
larger than the register width causes nothing to happen, that is, only the pertinent bits are written to
the register.

2. The register to be written to or read from is >8 and <=16 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to
read or write the register. The first transaction should read/write the lower byte and the second
transaction the upper byte.

3. The register to be written to or read from is >16 and <=32 bits

In this case, four AHB transactions are required, which in turn creates four APB transactions, to
read or write the register. The first transaction should read/write the lower byte and the second
transaction the second byte, and so on.

Because the bus is reading a byte at a time, all lower bits of paddr are decoded in the 8-bit bus case.

Write Timing Operation
A timing diagram of an APB write transaction for an APB peripheral register (an earlier version of the
DW_apb_ictl) is shown in the following figure. Data, address, and control signals are aligned. The
APB frame lasts for two cycles when psel is high.

Figure 32: APB Write Transaction

Register

pclk

psel

penable

pwrite

paddr[7:2]

pwdata[31:0]

irq_inten[32:0]

wen_inten[4:0] 0x0f

0x100000000 0x100001234

0x00001234

IrqIntEnL

January 20, 2006 Synopsys, Inc. 141

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

A write can occur after the first phase with penable low, or after the second phase when penable is high.
The second phase is preferred and is used in all APB slave components. The timing diagram is shown
with the write occurring after the second phase. Whenever the address on paddr matches a
corresponding address from the memory map and provided psel, pwrite, and penable are high, then the
corresponding register write enable is generated.

A write from the AHB to the APB does not require the AHB system bus to stall until the transfer on the
APB has completed. A write to the APB can be followed by a read transaction from another AHB
peripheral (not the DW_apb).

The timing example is a 33-bit register and a 32-bit APB data bus. To write this, 5 byte enables would
be generated internally. The example shows writing to the first 32 bits with one write transaction.

Read Timing Operation
A timing diagram of an APB read transaction for an APB peripheral (an earlier version of the
DW_apb_ictl) is shown in the following figure. The APB frame lasts for two cycles, when psel is high.

Figure 33: APB Read Transaction

Whenever the address on paddr matches the corresponding address from the memory map—psel is
high, pwrite and penable are low—then the corresponding read enable is generated. The read data is
registered within the peripheral before passing back to the master through the DW_apb and DW_ahb.

The qualification of the read-back data with hready from the bridge is shown in the timing diagram, but
this does not form part of the APB interface. The read happens in the first APB cycle and is passed
straight back to the AHB master in the same cycles as it passes through the bridge. By returning the
data immediately to the AHB bus, the bridge can release control of the AHB data bus faster. This is
important for systems where the APB clock is slower than the AHB clock.

Once a read transaction is started, it is completed and the AHB bus is held until the data is returned
from the slave

Register

pclk

psel

penable

pwrite

paddr[7:2]

prdata[31:0]

irq_inten[32:0]

ren_irq_inten[4:0]

0x100001234

0x1234

IrqIntEnL

0x1234hrdata[31:0]

hready

142 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

Note
If a read enable is not active, then the previously read data is maintained on the read-back
data bus.

Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then
use the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read
at time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the
same value it was when the register was read at time 1. The unread part is stored into a shadow register
and this is read at time 2. When there is no coherency, no shadow registers are involved.

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and
be guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully
programmed. This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter,
independent of the data bus width, the counter width, and even the relationship between the clocks.
Additionally, a value written in one domain is transferred to another domain in a seamless and coherent
fashion.

Throughout this appendix the following terms are used:

● Writing. A bus master programs a configuration register. An example is programming the load
value of a counter into a register.

● Transferring. The programmed register is in a different clock domain to where it is used,
therefore, it needs to be transferred to the other clock domain.

● Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

January 20, 2006 Synopsys, Inc. 143

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

Writing Coherently
Writing coherently means that all the bits of a register can be written at the same time. A peripheral
may have programmable registers that are wider than the width of the connected APB data bus, which
prevents all the bits being programmed at the same time unless additional coherency circuitry is
provided.

The programmable register could be the load value for a counter that may exist in a different clock
domain. Not only does the value to be programmed need to be coherent, it also needs to be transferred
to a different clock domain and then loaded into the counter. Depending on the function of the
programmable register, a qualifier may need to be generated with the data so that it knows when the
new value is currently transferred and when it should be loaded into the counter.

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit
APB system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to
transfer or use the register when the last byte is currently written. An example where no coherency is
required is a 16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a
single 16-bit wide write transfer.

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the
load register is being programmed, the counter has access to the previous load value in case it needs to
reload the counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can
be transferred and loaded into the load register. When the lower bytes are being programmed, they need
to be stored in shadow registers so that the previous load register is available to the counter if it needs to
reload. When the upper byte is programmed, the contents of the shadow registers and the upper byte are
loaded into the load register.

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter
only when it has been fully programmed. A new value is available to the counter once this upper byte is
written into the register. The following table gives the relationship between the register width and the
peripheral bus width for the generation of the correct upper byte. The numbers in the table represent
bytes, Byte 0 is the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as
the entire register is written with one access.

Table 9: Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

144 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

There are three relationship cases to be considered for the processor and peripheral clocks:

● Identical
● Synchronous (phase coherent but of an integer fraction)
● Asynchronous

Identical Clocks
The following figure illustrates an RTL diagram for the circuitry required to implement the coherent
write transaction when the APB bus clock and peripheral clocks are identical.

Figure 34: Coherent Loading – Identical Synchronous Clocks

The following timing diagram shows the shadow registers being loaded and then loaded into the
counter when fully programmed. The LoadCnt signal lasts for one cycle and is used to load the counter
with CntLoadValue.

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

January 20, 2006 Synopsys, Inc. 145

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

Figure 35: Coherent Loading – Identical Synchronous Clocks

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the
final byte are transferred into the CntLoadValue register when the final byte is written. The counter
uses this register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from
this register each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle.
This allows the counter to be loaded in one access and the state of the counter is not affected by the
latency in programming it. When there is a new value to be loaded into the counter initially, this is
signaled by LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

Synchronous Clocks
When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended
so that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock
edge. At the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter
clock toggles, otherwise it keeps its current value. A circuit detecting the toggling is used to clear the
original LoadCnt by looking for edge changes. The value is loaded into the counter when a toggle has
been detected. Once it is loaded, the counter should be free to increment or decrement by normal rules.

A0 A1 A2 A3

A B C D

A

B

C

DCBA

DCBA

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]]

tLoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

146 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 36: Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

January 20, 2006 Synopsys, Inc. 147

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

The following timing diagram shows the shadow registers being loaded and then loaded into the
counter when fully programmed. The LoadCnt signal is extended until a change in the toggle is
detected and is used to load the counter.

Figure 37: Coherent Loading – Synchronous Clocks

A0 A1 A2 A3

A B C D

A

B

C

DCBA

DCBA

pclk

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle

toggle_edge_detect

Counter[31:0]

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

148 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

Asynchronous Clocks
When the clocks are asynchronous, the processor clock needs to be three-times the speed of the
peripheral clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs
to be greater than the period of the processor clock. The following figure shows an RTL diagram for the
circuitry required to implement the coherent write when the bus and peripheral clocks are
asynchronous.

Figure 38: Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock
domain to another. It is not desirable to transfer the entire register through meta-stability registers, as
coherency is not guaranteed with this method. The circuitry needed requires the processor clock to be
used to re-time the peripheral clock. Upon a rising edge of the re-timed clock, the new value signal,
NewValue, is transferred into a safe new value signal, SafeNewValue, which happens after the edge of
the peripheral clock has occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into
a SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes.

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

January 20, 2006 Synopsys, Inc. 149

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

A counter running on the peripheral clock is able to use this value safely. It could be up to two
peripheral clock periods before the value is loaded into the counter. Along with this loaded value, there
also is a single bit transferred that is used to qualify the loading of the value into the counter.

The following timing diagram does not show the shadow registers being loaded. This is identical to the
loading for the other clock modes. The NewValue signal is extended until a change in the toggle is
detected and is used to update the safe value. The SafeNewValue is used to load the counter at the
rising edge of the peripheral clock. Each time a new value is written the toggle bit is flipped and the
edge detection of the toggle is used to remove both the NewValue and the SafeNewValue.

Figure 39: Coherent Loading – Asynchronous Clocks

A3

D

D C BA

D C BA

D C B A

pclk

coun te r_ clk

U p perByte W en

pa ddr

pe nab le

pw da ta [7 :0]

N e w Va lue

C n tL oad Va lue [3 1 :0]

red_ cou n te r_clk

Sa fe C n tLo adVa lue [31 :0]

Sa fe N ew Va lue

tog g le

C lrN ew Va lue

C o un te r[31 :0]

0D

0D0C0B0A

0D0C0B0A

0D0C0B0A

150 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

Reading Coherently
For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between
the register width and the bus width for the generation of the correct lower byte. Depending on the bus
width and the register width, there may be no need to save the upper bits because the entire register is
read in one access, in which case there is no problem with coherency. When the lower byte is read, the
remaining upper bytes within the counter register are transferred into a holding register. The holding
register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with
one access.

There are two cases regarding the relationship between the processor and peripheral clocks to be
considered as follows:

● Identical and/or synchronous
● Asynchronous

Synchronous Clocks
When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved
into a holding register once a read is started. The first read byte must be the lower byte provided in the
previous table, which causes the other bits to be moved into the holding register, SafeCntVal, provided
that the register cannot be read in one access. The upper bytes of the register are read from the holding
register rather than the actual register so that the value read is coherent. This is illustrated in the
following figure and timing diagram.

Table 10: Lower Byte Generation

Lower Byte
Bus Width

Counter Register
Width

8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

17 - 24 0 0 NCR

25 - 32 0 0 NCR

January 20, 2006 Synopsys, Inc. 151

DesignWare DW_apb_uart Databook Chapter 9: Integration Considerations

Figure 40: Coherent Registering – Synchronous Clocks

Figure 41: Coherent Registering – Synchronous Clocks

Asynchronous Clocks
When the clocks are asynchronous, the processor clock needs to be three times the speed of the
peripheral clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs
to be greater than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter
clock signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed
counter clock signal is detected, it is safe to use the counter value to update a shadow register that holds
the current value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Note
You must read LSB to MSB when the bus width is narrower than the counter width.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked with
the processor clock.

0123 A BCD EFGH

A 0 A 1 A2 A3 A0 A1 A2

3 2 1 0 H G

012 E FG

pc lk

c lk1

CntV al[31:0]

paddr

penable

prdata[7:0]

S afeCntVal[31:8]

LowerByteRen

00010203 0A0B0C0D 0E0F0G0H

03 02 01 00 0H 0G

000102 0E0F0G

152 Synopsys, Inc. January 20, 2006

Chapter 9: Integration Considerations DesignWare DW_apb_uart Databook

the contents of the shadow register instead of the actual counter value. The holding register is read
when the bus width is narrower than the counter width. When the LSB is read, the value comes from
the shadow register; when the remaining bytes are read they come from the holding register. If the data
bus width is wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred,
because the value is stable.

The following figure and timing diagram illustrate the synchronization of the counter clock and the
update of the shadow register.

Figure 42: Coherency and Shadow Registering – Asynchronous Clocks

Figure 43: Transfer to Shadowing Registers– Asynchronous Clocks

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

0123 ABCD E FGH

A0 A1 A2 A3 A0 A1 A2

3 2 1 0 H G

012 E FG

pc lk

c lk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerBy teRen

0E0F0G000102

03 02 01 00 0H 0G

00010203 0E0F0G0H0A0B0C0D

January 20, 2006 Synopsys, Inc. 153

DesignWare DW_apb_uart Databook Appendix A: Building and Verifying Your DW_apb_uart

A
Building and Verifying Your DW_apb_uart

This chapter provides an overview of the step-by-step process you use to configure, synthesize, and
verify your DW_apb_uart component using the Synopsys coreConsultant tool. You use coreConsultant
to create a workspace that is your working version of a subsystem, where you connect, configure,
simulate, and synthesize your implementation of the subsystem. You can create several workspaces to
experiment with different design alternatives. The topics are as follows:

● “Set up Your Environment”
● “Start coreConsultant”
● “Check Your Environment” on page 155
● “Configure DW_apb_uart” on page 155
● “Create Gate-Level Netlist” on page 156
● “Verifying the DW_apb_uart” on page 160

If you plan to include the DW_apb_uart as part of a DesignWare AMBA subsystem, then you will want
to use the DesignWare Connect tool. This tool is a customized version of coreAssembler. For more
information about including DW_apb_uart in a DesignWare AMBA subsystem, refer to Chapter 2,
“Building and Verifying a Subsystem” on page 21.

Set up Your Environment
DW_apb_uart is included with a DesignWare Synthesizable Components for AMBA 2 release; it is
assumed that you have already downloaded and installed the release. However, to download and install
the latest versions of required tools, refer to the DesignWare AMBA Synthesizable Components
Installation Guide.

You also need to set up your environment correctly using specific environment variables, such as
DESIGNWARE_HOME, VERA_HOME, PATH, and SYNOPSYS. If you are not familiar with these
requirements and the necessary licenses, refer to “Setting up Your Environment” in the DesignWare
AMBA Synthesizable Components Installation Guide.

154 Synopsys, Inc. January 20, 2006

Appendix A: Building and Verifying Your DW_apb_uart DesignWare DW_apb_uart Databook

Start coreConsultant
To invoke coreConsultant:

1. In a UNIX shell, navigate to a directory where you plan to locate your component workspace.

2. Invoke the coreConsultant GUI:

% coreConsultant

The welcome page is displayed, similar to the one below.

Activity
List pane

Console
pane

Command
Line pane

Activity View
pane

January 20, 2006 Synopsys, Inc. 155

DesignWare DW_apb_uart Databook Appendix A: Building and Verifying Your DW_apb_uart

3. Click on the DW_apb_uart link in the “Configuring and Using an IP block” section to create a new
workspace. After you have created a workspace, you can also continue working from the point you
left off by using the “Open” link to open it back up.

In the resulting dialog box, specify the workspace name and workspace root directory, or use the
defaults – a workspace name is the name of a configuration of a core; the workspace root directory
is the directory in which the configuration is created. Click OK.

You may notice that you are already in the Specify Configuration activity under the Create RTL
category in the Activity List on the left, and that the Set Design Prefix activity is already checked
in the list. It is not necessary for you to set the design prefix at this point of the learning phase. You
may use this feature in the future if you ever use multiple versions of a component in a design.

Check Your Environment
Before you begin configuring your component, it is recommended that you check your environment to
make sure you have the latest tool versions installed and your environment variables set up correctly.

To check your environment, use the Help > Check Environment menu path.

An HTML report is displayed in a separate dialog. This report lists the specific tools and versions
installed in your environment. It also displays errors when a specific tool is not installed or if you are
using an older version than you need. You will also see an error if your $DESIGNWARE_HOME
environment variable has not been set up correctly.

Configure DW_apb_uart
This section steps you through the tasks in the coreConsultant GUI that configure your core. Complete
information on the latest version of coreConsultant can be found on the web in the coreConsultant User
Guide. To view documentation specific to your version of coreConsultant, choose the Help pull-down
menu from the coreConsultant GUI.

At any time during this process you can click on the Help tab for each activity to activate the
coreConsultant online help.

Note
Throughout the remaining steps in this chapter, it is best if you apply the default values so
that the directions and descriptions in the chapter will coincide with your display. After
you have used the DW_apb_uart in coreConsultant, you can then go back through these
steps and change values in order to see how they affect the design.

1. Notice that the Set Design Prefix activity is already checked. This setting is used to make each
design in your component have a unique name. This is needed only when you have two or more
versions of

2. Specify Configuration – The Specify Configuration activity is where you specify the basic
configuration of the DW_apb_uart. If you have a Source license, you can choose to use
DesignWare Building Block IP (DWBB) components for optimal Synthesis QoR. Alternatively, if
you have an RTL source licence, you may use source code for DWBB components without a
DesignWare license. If you use RTL source and also have a DesignWare key, you can choose to
retain the DWBB parts.

http://www.synopsys.com/designware/docs/doc/coretools/latest/ccug.pdf
http://www.synopsys.com/designware/docs/doc/coretools/latest/ccug.pdf

156 Synopsys, Inc. January 20, 2006

Appendix A: Building and Verifying Your DW_apb_uart DesignWare DW_apb_uart Databook

Look through the basic parameters for each item. Click the Next button to view the other
configuration defaults. If you need help with any field in the activity pane, right-click on the field
name and then left-click on the What’s This box. When finished, click Apply.

When the configuration setup is complete, the Report tab is displayed, which gives you all the
source files (in encrypted format if you have a DW license, and unencrypted if you have a source
license) and all the parameters that have been set for this particular configuration. Reports contain
useful information as you complete each step in the coreConsultant process. Familiarize yourself
with the report contents before going to the next step.

Create Gate-Level Netlist
To run synthesis on the DW_apb_uart and create a gate-level netlist, step through the following tasks in
the coreConsultant GUI. You need to click the check box next to each activity in order to access the
specific activity dialog. At any time, you can click on the Help tab for each activity in order to activate
the coreConsultant online help.

1. Look at the tool installation root directories in the Tool Installation Roots dialog, which is accessed
from the toolbar menu through Edit > Tool Installation Roots, or by using the Tools button on the
toolbar. You can type values directly in the data fields, or use the buttons to locate the correct
directories. The tool choices are:

❍ Design Compiler (dc_shell) – Specifies the location for the root directory of the Design
Compiler installation, if different from the default location. You are required to select either
Design Compiler or FPGA Compiler II.

❍ Physical Compiler (psyn_shell) – Enables the Physical Compiler if you plan to use an
incremental physical synthesis strategy or if you plan to do RTL to place gates.

❍ Primetime (pt_shell) – Enables Primetime if you plan to implement budgeting or generate
timing models.

❍ Formality (fm_shell) – Enables Formality if you plan to formally verify the synthesized
gate-level implementation of the core.

❍ DC FPGA (fpga_shell) – Enables Design Compiler FPGA if your synthesis targets high-end
FPGA devices.

At a minimum for this exercise, dc_shell or fc2_shell must have defined installation directories,
and in order to complete the optional formal verification in this chapter, you will also need
fm_shell.

2. Specify Target Technology – coreConsultant analyzes the target technology library and uses it to
generate a synthesis strategy that is optimized for your technology library. In the Design Compiler
windows, a target and link library must be specified; otherwise, errors occur in coreConsultant.

Under the Specify Target Technology category in the Activity List, the title in the tabs depends on
the compiler you chose in the previous step. Regardless, this screen provides fields for you to enter
the search path for the specific compiler, as well as target and link library paths. If necessary,
specify the search path for the tool you specified in the previous screen. Also, specify the path to
the target and link libraries. Click Apply and familiarize yourself with the resultant report, which
gives you the technology information.

January 20, 2006 Synopsys, Inc. 157

DesignWare DW_apb_uart Databook Appendix A: Building and Verifying Your DW_apb_uart

3. Specify Clock(s) – In the Specify Clock(s) activity, look at the attributes associated with each of
the real and virtual clocks in your design. Click Apply and familiarize yourself with the resultant
report, which gives you clock information.

4. Specify Operating Conditions and Wire Loads – In the Specify Operating Conditions and Wire
Loads activity, look at the attributes relating to the chip environment. If you do not see a value
beside OperatingConditionsWorst, select an appropriate value from the drop-down list; if there is
no value for this attribute, you will get an error message. Click Apply and look at the report, which
gives the operating conditions and wireload information.

5. Specify Port Constraints – In the Specify Port Constraints activity, look at the attributes
associated with input delay, drive strength, DRC constraints, output delay, and load specifications.
Click Apply and look at the report, which gives the port constraint checks.

6. Specify Synthesis Methodology – In the Specify Synthesis Methodology activity, look at the
synthesis strategy attributes. Note that these attributes are typically set by the core developer and
are not required to be modified by the core integrator. If you want to add your own commands
during a synthesis, you use the Advanced tab in order to provide pathnames to your auxiliary
scripts. Also click on the Physical Synthesis, and Fpga Synthesis tabs to familiarize yourself with
those items. Click Apply and look at the report, which gives design information. For more
information on adding auxiliary scripts, refer to “Advanced Synthesis Attributes” in the
coreConsultant User Guide.

7. Specify Test Methodology – In the Specify Test Methodology activity, look at the scan test
attributes. Also click on the other tabs to familiarize yourself with auto-fix attributes, SoC test
wrapper attributes, test wrapper integration attributes, BIST attributes, and BIST testpoint
insertion attributes. Click Apply and look at the report, which gives design-for-test information.

8. Synthesize – Choose the Synthesize activity. Do the following:

a. Choose the Strategy tab.

b. Click the Options button beside DCTCL_opto_strategy and look through the strategy
parameters. For example, you can use the Gate Clocks During Elaboration check box in the
Clock Gating tab in order to add parameters that enable and control the use of clock gating.
Click OK when you are done. For more information on clock gating and other parameters for
synthesis strategies, refer to “DC(TCL)_opto_strategy” in the coreConsultant User Guide.

For FPGA synthesis, click the Options button and then select the FPGA Synthesis tab. It is
here where you specify the location of your FPGA device and speed grade, synthetic libraries
other than DesignWare Foundation libraries, implementation of DC-FPGA operators, and so
on. For more information about running synthesis for an FPGA device, refer to the
coreConsultant User Guide.

For Design for Test, click the Options button and then select the Design for Test tab. Here you
can specify whether to add the -scan option to the initial compile call (Test Read Compile)
and/or insert design for test circuitry (Insert Dft). For more information about include DFT in
your synthesis run, refer to the coreConsultant User Guide.

158 Synopsys, Inc. January 20, 2006

Appendix A: Building and Verifying Your DW_apb_uart DesignWare DW_apb_uart Databook

c. Choose the Options tab. Look at the values for the parameters listed below.

d. If it is not already set, choose the “local” Run Style option and maintain the other default
settings.

e. Look through the Licenses and Reports tabs, and ensure that you have all the licenses that are
required to run this synthesis session.

f. Click Apply in the Synthesize activity pane to start synthesis from coreConsultant. The
current status of the synthesis run is displayed in the main window. Click the Reload Page
button if you want to update the status in this screen.

9. Generate Test Vectors – This option allows you to generate ATPG test vectors with TetraMax.
For more information about this option, refer to “Generating ATPG Test Vectors” in the
coreConsultant User Guide.

Field Name Description

Execution Options

Generate Scripts
only?

Values: Enable or Disable
Default Value: Disable
Description: Writes the run.scr script, but it is not run when you click Apply. To
run the script, go to the component workspace and run the script.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through LSF, through
GRD, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for the run style options except local. For
remote, specify the hostname. For LSF and GRD, specify bsub or qsub
commands.

Parallel job CPU
limit

Values: user-defined; minimum value is 1
Default Value: 1
Description: Specifies number of parallel compile jobs that can be run.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is terminated.

Skip reading
$HOME/.synopsys_
dc.setup

Values: Enable or Disable
Default Value: Disable
Description: Forces tools not to read .synopsys_dc.setup file from $HOME.

January 20, 2006 Synopsys, Inc. 159

DesignWare DW_apb_uart Databook Appendix A: Building and Verifying Your DW_apb_uart

Checking Synthesis Status and Results
To check synthesis status and results, click the Report tab for the synthesis options; coreConsultant
displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your synthesis results
● The name of the host on which the synthesis is running
● The process ID (Job Id) of the synthesis
● The status of the synthesis job (running or done)

The Results dialog also enables you to kill the synthesis (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Summary of log files
● Synthesis stages that completed
● Summary of stage results

This information indicates whether the synthesis executed successfully, and lists the DW_apb_uart
transactions that occurred during the scenario(s). Thorough analysis of the scenario execution requires
detailed analysis of all synthesis log files and inspection of report summaries.

Synthesis Output Files
All the synthesis results and log files are created under the syn directory in your workspace. Two of the
files in the workspace/syn directory are:

● run.scr – Top-level synthesis script for DW_apb_uart
● run.log – Synthesis log file

Your final netlist and report directories depend on the QoR effort that you chose for your synthesis
(default is medium):

● low – initial
● medium – incr1
● high – incr2

For information about deliverables that are generated after synthesis is performed, refer to “Database
Description” on page 167.

Running Synthesis from Command Line
To run synthesis from the command line prompt for the files generated by coreConsultant, enter the
following command:

% run.scr

This script resides in your workspace/syn directory.

160 Synopsys, Inc. January 20, 2006

Appendix A: Building and Verifying Your DW_apb_uart DesignWare DW_apb_uart Databook

Verifying the DW_apb_uart
This section provides the steps you use to execute the testbench available for DW_apb_uart
verification. Once the DW_apb_uart has been configured and the verification environment has been set
up, simulations can be automatically run. In fact, both synthesis and simulation activities can be done
in parallel, so you do not have to wait for synthesis to complete in order to start a simulation.

DW_apb_uart verification is detailed in the following sections:

● “Creating GTECH Simulation Models”
● “Verifying the Simulation Model” on page 162

Note
For GTECH Simulations Only. Due to the configurable nature of the component, some
ports in the testbench may not be needed for your chosen configuration. Warnings about
undriven nets may appear. These warnings are to be expected, and you can ignore them.
The verification result files show if the verification ran successfully.

Creating GTECH Simulation Models
DesignWare AMBA Synthesizable Components (coreKit RTL) are delivered in encrypted format,
rather than source code, and some simulators cannot read the encrypted source files. In order for these
simulators to read the encrypted files, you must either perform a GTECH conversion or purchase a
source license from Synopsys.

Note
The Synopsys VCS simulator reads the encrypted files directly and does not require a
GTECH conversion. All other supported simulators require a GTECH simulation model.
You need a DesignWare license to complete the GTECH generation process. If you are a
source license customer, then you do not have to generate a GTECH simulation model,
even if you are using a non-VCS simulator.

Also, it is not possible to perform a GTECH simulation with DC FPGA.

1. Generate GTECH Model – To create a GTECH simulation model, click on the Generate GTECH
Simulation Model activity.

2. Look at the values for the parameters listed below.

Field Name Description

Execution Options

Generate Scripts only? Values: Enable or Disable
Default Value: Disable
Description: Writes scripts that run the generation of the GTECH simulation
model, but they are not run when you click Apply. To run these scripts, go to the
gtech directory of the component workspace and run the run.scr script.

January 20, 2006 Synopsys, Inc. 161

DesignWare DW_apb_uart Databook Appendix A: Building and Verifying Your DW_apb_uart

3. Click Apply; coreConsultant invokes Design Compiler to perform a low-effort compile
(quickmap) of your custom configuration using the Synopsys technology-independent GTECH
library. After this activity has completed, an e-mail similar to the following is sent to the specified
user name (if you enabled that option):

Activity: GenerateGtechModel
Workspace: workspace_path
Design: DW_apb_uart
Started: Wed Jul 24 16:19:48 BST 2002
Finished: Wed Jul 24 16:21:42 BST 2002
Status: Completed
Results: workspace_path/gtech/gtech.log

Your simulation model is contained in the DW_apb_uart.v output file that is written to
workspace/gtech/qmap/db.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through LSF, through
GRR, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for the run style options except local. For
remote, specify the hostname. For LSF and GRD, specify bsub or qsub
commands.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Synthesis Control

Ungroup Netlist after
Compile

Values: 0 (Enabled) or 1 (Disabled)
Default Value: 0 (Disabled)
Description: Ungroups the design to provide a non-hierarchical netlist

Field Name Description

162 Synopsys, Inc. January 20, 2006

Appendix A: Building and Verifying Your DW_apb_uart DesignWare DW_apb_uart Databook

Verifying the Simulation Model
To verify the DW_apb_uart, use coreConsultant to complete the following steps:

1. (Optional) Formal Verification – You can run formal verification scripts using Synopsys
Formality (fm_shell) to check two designs for functional equivalence. You can check the
gate-level design from a selected phase of a previously executed synthesis strategy against either
the RTL version of the design or the gate-level design from another stage of synthesis. To run this,
choose Formal Verification under the Verify Component category and then click Apply.

2. Setup and Run Simulations – Specify the simulation by completing the Setup and Run
Simulations activity:

a. In the Select Simulator area, click on the Simulator view list item to view available simulators
(VCS is the default).

b. Specify an appropriate Verilog simulator from the drop-down menu.

For installation instructions and information about required tools and versions, refer to
“Setting up Your Environment” in the DesignWare AMBA Synthesizable Components
Installation Guide. For general information about the contents of the release, refer to the
DesignWare DW_apb_uart Release Notes.

c. In the Simulator Setup area of the Simulator pane, look at the parameters for the simulator
setup, as detailed in the following table.

d. In the Waves Setup area of the Simulator pane, look at the parameters for the waves setup as
detailed below.

Field Name Description

Root Directory of
Cadence Installation

The path to the top of the directory tree where the Cadence NC-Verilog
executable is found; coreConsultant automatically detects this path. The
NC-Verilog executables reside in the ./bin subdirectory.

MTI Include Directory The path to the include directory contained within your MTI simulator
installation area. A valid directory includes the veriuser.h file.

Vera Install Area
($VERA_HOME)

Path to your Vera installation.
Default Value: value of your $VERA_HOME variable

Vera .vro file cache
directory

Location to store .vro files. These files are generated as part of building the
testbench. Encrypted Vera is source is compiled and stored in the cache.

DW Foundation Install
Area ($SYNOPSYS)

Path to your Synopsys DW Foundation installation, which is set from the
Tools Installation Areas dialog box. Any change to this value must be made
from the Tool Installation Areas coreConsultant dialog box.

C Compiler for (Vera
PLI)

Values: gcc or cc
Default Value: gcc
Description: Invokes the specific C compiler to create a Vera PLI for your
chosen non-VCS simulator. Choose cc if you have the platform native ANSI
C compiler installed. Choose gcc if you have GNU C compiler installed.

January 20, 2006 Synopsys, Inc. 163

DesignWare DW_apb_uart Databook Appendix A: Building and Verifying Your DW_apb_uart

Note
For the Generate Waves File setting, enable the check box so that the simulation creates a
file that you can use later for debugging the simulation, if you want to do so.

e. Choose the View list choice.

f. In the View Selection area of the View pane, look at the choice of views of the design you can
simulate from the drop-down list:

• RTL – requires a source license or Synopsys VCS

• GTECH – requires that you have completed the Generate GTECH Model activity (refer
to page 160) only if you are using a non-VCS simulator and do not have a source license.

g. Choose the Execution Options list choice to set the following options:

Field Name Description

Generates waves file Values: Enable or Disabled
Default Value: Disabled
Description: Indicates whether a wave file should be created for debugging
with a wave file browser after simulation ends. Uses VPD file format for
VCS and VCD format for the other supported simulators.

Depth of waves to be
recorded

Description: Enter the depth of the signal hierarchy for which to record
waves in the dump file. A depth of 0 indicates all signals in the hierarchy are
included in the wave file.

Field Name Description

Do Not Launch
Simulation

Values: Enable or Disable
Default Value: Disable
Description: Determines whether to execute the simulation or just generate the
simulation run script. If checked, coreConsultant generates, but does not
execute, the simulation run script. You can execute the script at a later time by
invoking the run script (workspace/sim/run.scr) directly from the UNIX
command line or by repeating the Verification activity with Do Not Launch
Simulation unselected.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through LSF, through
GRD, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for the run style options except local. For
remote, specify the hostname. For LSF and GRD, specify bsub or qsub
commands.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

164 Synopsys, Inc. January 20, 2006

Appendix A: Building and Verifying Your DW_apb_uart DesignWare DW_apb_uart Databook

h. Select Testbench and look at the options described below:

i. Click Apply to run the simulation.

When you click Apply, coreConsultant performs the following actions:

❍ Sets up the DW_apb_uart verification environment to match your selected DW_apb_uart
configuration.

❍ Generates the simulation run script (run.scr) and writes it to your workspace/sim directory.

❍ Invokes the simulation run script, unless you enabled the Do Not Launch Simulation option.

The simulation run script, in turn, performs the following actions:

❍ Links the generated command files, and recompiles the testbench.

❍ Invokes your simulator to simulate the specified scenarios.

❍ Writes the simulation output files to your workspace/sim/test_* directory.

❍ If an e-mail address is specified, sends the simulation completion information to that e-mail
address when the simulation is complete.

For an overview of the related tests, refer to “Verification” on page 133.

Checking Simulation Status and Results
To check simulation status and results, click the Report tab for either the GTECH models or for the
simulation options; coreConsultant displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your simulation results
● The name of the host on which the simulation is running
● The process ID (Job Id) of the simulation
● The status of the simulation job (running or done)

If you selected the “LSF/GRD” option for the Run Style, then the status of the simulation jobs (running
or complete) is incorrect. Once all the simulation jobs are submitted to the LSF/GRD queue, the status
would indicate “complete.” You should use “bjobs/qstatus” to see whether all the jobs are completed.

The Results dialog also enables you to kill the simulation (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Vera compile execution messages
● Simulation execution messages
● DW_apb_uart bus transactions

This information indicates whether the simulation executed successfully, and lists the DW_apb_uart
transactions that occurred during the scenario(s).

Thorough analysis of the scenario execution requires detailed analysis of all simulation output files and
inspection of simulation waveforms with a waveform viewer.

Field Name Description

Run test_uart Values: Enable or Disable
Default Value: Enable
Description: Tests general functions of the DW_apb_uart.

January 20, 2006 Synopsys, Inc. 165

DesignWare DW_apb_uart Databook Appendix A: Building and Verifying Your DW_apb_uart

Creating a Batch Script
It sometimes helps to have a batch file that contains information about the workspace, parameters,
attributes, and so on. You can then review these by looking at the file in an ASCII editor. To do this,
choose the File > Write Batch Script menu item and enter a name for the file. Then look at the
contents to familiarize yourself with the information that you can get from this file. You can use the
batch script to reproduce the workspace.

Applying Default Verification Attributes
To reset all DW_apb_uart verification attributes to their default values, use the Default button in the
Setup and Run Simulation activity under the Verification tab.

To examine default attribute values without resetting the attribute values in your current workspace,
create a new workspace; the new workspace has all the default attribute values. Alternatively, use the
Default button to reset the values, and then close your current workspace without saving it.

166 Synopsys, Inc. January 20, 2006

Appendix A: Building and Verifying Your DW_apb_uart DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 167

DesignWare DW_apb_uart Databook Appendix B: Database Description

B
Database Description

This appendix lists the deliverables and other reference files that are generated from the coreConsultant
flow.

This appendix includes the following sections:

● “Design/HDL Files” on page 168
● “Register Map Files” on page 169
● “Synthesis Files” on page 170
● “Verification Reference Files” on page 170

168 Synopsys, Inc. January 20, 2006

Appendix B: Database Description DesignWare DW_apb_uart Databook

Design/HDL Files
The following sections describe the design and HDL files that are produced by coreConsultant when
configuring and verifying a DesignWare AMBA component.

RTL-Level Files
The following table describes the RTL files that are generated by the Create RTL activity of the
coreConsultant GUI. They are encrypted except where otherwise noted.

Note
Any Synopsys synthesis tool or simulator can read encrypted RTL files.

Table 11: RTL-Level Files

Files Encrypted? Purpose

./src/component_cc_constants.v No Includes definitions and values of all configuration
parameters that you have specified for the component.

./src/component.v No Top-level HDL file.
When you include the component in your simulation, you
must include the DesignWare libraries by using the
following options in your simulator invocation:
-y ${SYNOPSYS}/packages/gtech/src_ver
-y ${SYNOPSYS}/dw/sim_ver
For an example of this process, refer to the DW_AMBA
QuickStart SingleLayer Example Guide.
Note: If you could not open the QuickStart documentation,
it means that you have not downloaded the QuickStart
examples. For download instructions, please refer to the
DesignWare AMBA Synthesizable Components Installation
Guide.

./src/component_submodule.v Yes Sub-modules of component

./src/component_constants.v No Includes the constants used internally in the design.

./src/component.lst No Lists the order in which the RTL files should be read into
tools, such as simulators or dc_shell. For example, use the
following option to read the design into VCS:
vcs -f component.lst

./src/*.update Yes Ignore these files. Used for VHDL generation

./export/component_inst.v No Instantiation of configured component for use in design

January 20, 2006 Synopsys, Inc. 169

DesignWare DW_apb_uart Databook Appendix B: Database Description

Simulation Model Files
The following table includes the simulation model files generated for the component during the
Generate GTECH Simulation activity in coreConsultant. These files are needed when you are using a
non-Synopsys simulator (when you can not use the encrypted RTL).

Register Map Files
These files only pertain to DW_ahb and DW_apb slaves, basically components that have a
programming interface. The DesignWare AMBA components that do not have register map files are
the DW_apb, DW_ahb_icm, and DW_ahb_h2h components. These files include address definitions
(memory map) for the component. The following table includes a description of the C and Verilog
header files generated for components with programming interfaces.

Table 12: Simulation Model Files

Files Encrypted? Purpose

./gtech/final/db/component.v No Simulation model of the component for use with
non-Synopsys simulators. A technology-independent,
gate-level netlist. VHDL and Verilog versions are generated.
When you use this simulation model in your simulation, you
must include the DesignWare libraries by using the following
options in your simulator invocation:
-y ${SYNOPSYS}/packages/gtech/src_ver
-y ${SYNOPSYS}/dw/sim_ver
For an example of this process, refer to the DW_AMBA
QuickStart SingleLayer Example Guide.
Note: If you could not open the QuickStart documentation, it
means that you have not downloaded the QuickStart
examples. For download instructions, please refer to the
DesignWare AMBA Synthesizable Components Installation
Guide.

Table 13: Header Files

Files Encrypted? Purpose

./c_headers/component_defs.h No For use when programming the component in a C
environment.

./verilog_headers/component_defs.v No For use when programming the component in a Verilog
environment.

170 Synopsys, Inc. January 20, 2006

Appendix B: Database Description DesignWare DW_apb_uart Databook

Synthesis Files
The following table includes the files that are generated after the Create Gate-Level Netlist activity in
coreConsultant is performed on a component.

Verification Reference Files
The files described in the following table include information pertaining to the component’s operation
so that you can verify installation and configuration of the component has been successful. These files
are not for re-use during system-level verification.

For more information about performing verification on your component, see the chapter titled
Verification in this databook.

Table 14: Synthesis Files

Files Encrypted? Purpose

./syn/auxScripts No Auxiliary files for synthesis.

./syn/final/db/component.db Binary format Synopsys .db files (gate level) that can be read into dc_shell for
further synthesis, if desired.

./syn/final/db/component.v No Gate-level netlist that is mapped to technology libraries that you
specify.

./syn/constrain/script/*.* No Constraint files for the components.

./syn/final/report/*.* No Synthesis result files.

Table 15: Verification Reference Files

Files Encrypted? Purpose

./sim/runtest No Perl script that runs the coreConsultant Verify Component
activity from the command line.

./sim/runtest.log No The overall result of simulation, including pass/fail results.

./sim/test_testname/test.result No Pass/fail of individual test.

./sim/test_testname/test.log No Log file for individual test.

January 20, 2006 Synopsys, Inc. 171

DesignWare DW_apb_uart Databook Appendix C: DesignWare QuickStart Designs

C
DesignWare QuickStart Designs

The DesignWare AMBA Synthesizable Components environment provides many templates and
examples to help you be successful with your own design creation process. This section summarizes
these system design aids, and points you to more information about them.

QuickStart Example Designs
QuickStart examples are provided with the DesignWare Synthesizable Components and verification
models to help you learn about these products. The QuickStart examples show how to connect the
DesignWare AMBA Synthesizable Components to the DW_apb and DW_ahb bus IP, and how to set up
a verification environment. These are simulation-only subsystems to view waveforms, and not for use
in synthesis. Each example design includes the following information:

● Block diagram of subsystem design, showing connections and ports
● Purpose of the example, and features included
● Example directory structure
● Important configuration and parameter information
● Overview of the testbench and tests that are provided
● Instructions on how to quickly perform a simulation run

For more information about QuickStart examples, refer to the DesignWare AMBA
QuickStart_SingleLayer Guide and the DesignWare AMBA QuickStart_MultiLayer Guide.

Note
If you could not open the QuickStart documentation, it means that you have not
downloaded the QuickStart examples. For download instructions, please refer to the
DesignWare AMBA Synthesizable Components Installation Guide.

172 Synopsys, Inc. January 20, 2006

Appendix C: DesignWare QuickStart Designs DesignWare DW_apb_uart Databook

January 20, 2006 Synopsys, Inc. 173

DesignWare DW_apb_uart Databook Appendix D: Glossary

D
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and
off-chip external memory interfaces (ARM Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by ARM
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (ARM Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB
bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug.
A BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes
in a word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

174 Synopsys, Inc. January 20, 2006

Appendix D: Glossary DesignWare DW_apb_uart Databook

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands
typically return data to the testbench from the model.

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable
block that can be instantiated as a single entity (VHDL) or module (Verilog) in
a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used
in the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a
big piece of IIP. Anything that requires coreConsultant for configuration, as
well as anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in
the DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable
cores into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design
views and synthesis views you need to integrate the core into your design. Can
also synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format
back to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

January 20, 2006 Synopsys, Inc. 175

DesignWare DW_apb_uart Databook Appendix D: Glossary

DesignWare AMBA
Synthesizable Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant
or coreAssembler to quickly build DesignWare AMBA Synthesizable
Component designs.

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is
authorized by a single DesignWare license. Products include SmartModels,
VMT model suites, DesignWare Memory Models, Building Block IP, and the
DesignWare AMBA Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code
by non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable
HDL and non-synthesizable “hard” IP in all of its forms (coreKit, component,
core, MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of
a core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

176 Synopsys, Inc. January 20, 2006

Appendix D: Glossary DesignWare DW_apb_uart Databook

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

RTL Register Transfer Level. A higher level of abstraction that implies a certain
gate-level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as
synthesizable IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically
generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology
through synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component.
The files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in
any form, including a Design View.

workspace A network location that contains a personal copy of a component or
subsystem. After you configure the component or subsystem (using
coreConsultant or coreAssembler), the workspace contains the configured
component/subsystem and generated views needed for integration of the
component/subsystem at the top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing
easier interfacing. Usually requires an extra, sometimes automated, step to
create the wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

January 20, 2006 Synopsys, Inc. 177

DesignWare DW_apb_uart Databook Index

Index

A
active command queue

definition 173
activity

definition 173
Adding component, to subsystem 26
AHB

definition 173
AMBA

definition 173
APB

definition 173
APB bridge

definition 173
application design

definition 173
arbiter

definition 173
ATPG, with TetraMax 34
Auto CTS, timing of 54
Auto flow control 51
Auto RTS, timing of 53

B
BFM

definition 173
big-endian

definition 173
Block descriptions 14
Block diagram

DW_apb_uart functional 15
blocked command stream

definition 173
blocking command

definition 174
Building a subsystem, with Connect 21
bus bridge

definition 174

C
C header files 169
Check tool environment, in Connect 25
Coherency

about 142
read 150
write 143

command channel
definition 174

command stream
definition 174

component
definition 174

configuration
definition 174

configuration intent
definition 174

Configuring components
in Connect 29

Connect
building a subsystem 21
configuring components 29
creating a batch script 42
creating gate-level netlist 32
creating subsystem RTL 30
formal verification 40
overview of usage flow 22
starting 24
verifying a component 37

core
definition 174

core developer
definition 174

core integrator
definition 174

coreAssembler
definition 174

coreConsultant
definition 174

coreKit
definition 174

Create gate-level netlist 156
Creating

batch script of workspace 42
gate-level netlist in Connect 32

cycle command
definition 174

D
dc_shell 32
decoder

definition 174
design context

definition 174

178 Synopsys, Inc. January 20, 2006

Index DesignWare DW_apb_uart Databook

design creation
definition 174

Design for Test, synthesis options 33, 157
Design View

definition 174
DesignWare AMBA Synthesizable Components

definition 175
DesignWare cores

definition 175
DesignWare Library

definition 175
dual role device

definition 175
DW_apb

slaves
read timing operation 141
write timing operation 140

DW_apb_uart
description 45
features 16
overview 11
synthesis

output files 35, 159
testbench

overview of 134

E
endian

definition 175
Environment, licenses 18
Exporting, a subsystem 43

F
fm_shell 32
Formal verification, in Connect 40
FPGA, running synthesis for 33, 157
fpga_shell 32
Full-Functional Mode

definition 175
Functional description 45

G
Gate-level netlist, creating 156
Generating

subsystem RTL 30
GPIO

definition 175
GTECH

definition 175

GTECH, generation of 35, 160

H
hard IP

definition 175
HDL

definition 175

I
IIP

definition 175
implementation view

definition 175
instantiate

definition 175
Integrating, DW AMBA components 167
interface

definition 175
Interrupts 51
IP

definition 175
IrDA 1.0 SIR protocol 47
IrDA SIR data format, timing of 47

L
Licenses 18
little-endian

definition 175

M
MacroCell

definition 175
master

definition 175
model

definition 175
monitor

definition 175

N
non-blocking command

definition 175

O
Output files

GTECH 169

January 20, 2006 Synopsys, Inc. 179

DesignWare DW_apb_uart Databook Index

header files 169
register map 169
RTL-level 168
Simulation model 169
synthesis 170
verification 170

Overview 11

P
Parameters 69

overview of 87
peripheral

definition 176
Pins, description of 75
Programmable THRE interrupt 54
Programming DW_apb_uart

memory map 87
Protocol

IrDA 1.0 SIR 47
RS232 45

psyn_shell 32
pt_shell 32

R
Read coherency

about 150
and asynchronous clocks 151
and synchronous clocks 150

Reading, from unused locations 138
Register address map, summary and description of

87
Register bit map, description of 90
Registers

component parameter register (CPR) 128
component type register (CTR) 130
divisor latch high (DLH) 93
divisor latch low (DLL) 94
DMA Software Acknowledge (DMASA) 127
FIFO access (FAR) 114
FIFO control (FCR) 98
Halt TXr (HTX) 127
interrupt enable (IER) 95
interrupt identity (IIR) 96
line control (LCR) 100
line status (LSR) 104
modem control (MCR) 102
modem status (MSR) 107
receive buffer (RBR) 91
receive FIFO level (RFL) 119
receive FIFO write (RFW) 116
scratchpad (SCR) 109

shadow break control (SBCR) 122
shadow DMA mode (SDMAM) 123
shadow FIFO enable (SFE) 124
shadow RCVR trigger (SRT) 125
shadow receive buffer (SRBR) 112
shadow request to send (SRTS) 121
shadow transmit holding (STHR) 113
shadow TX empty trigger (STET) 126
software reset (SRR) 120
transmit FIFO level (TFL) 118
transmit FIFO read (TFR) 115
transmit holding (THR) 92
UART component version (UCV) 129
UART status (USR) 117

RS232, serial protocol 45
RTL

definition 176
run.scr 35, 159
Running

simulations in coreConsultant 162

S
SDRAM

definition 176
SDRAM controller

definition 176
Signals, description of 75
Simulation

generating GTECH models 35, 160
of a component 37
of a subsystem 40
of DW_apb_uart coreKit 134
options in coreConsultant 162
results 39, 42, 164
status 39, 42, 164

slave
definition 176

SoC
definition 176

SoC Platform
AHB contained in 11
APB, contained in 11
defined 11

soft IP
definition 176

Starting
Connect 24

static controller
definition 176

subsystem
definition 176

180 Synopsys, Inc. January 20, 2006

Index DesignWare DW_apb_uart Databook

Synthesis
output files 35, 159
results 35, 159
running from command line 159
target technology, specifying 32, 155, 156, 157,

162
synthesis intent

definition 176
synthesizable IP

definition 176
Synthesizing subsystem 32

T
Target technology, specifying 32, 155, 156, 157,

162
technology-independent

definition 176
Test Vectors, generating 34
Testsuite Regression Environment (TRE)

definition 176
THRE (Transmitter Holding Register Empty) 13
THRE interrupt 54
Timing

auto CTS 54
auto RTS 53
IrDA SIR data format 47
read operation of DW_apb slave 141
write operation of DW_apb slave 140

TRE
definition 176

U
USE_FOUNDATION 69

V
Verification

generating GTECH models 35, 160
of a component 37
of a subsystem 40
of DW_apb_uart coreKit 134

Verilog header files 169
VIP

definition 176

W
Waves setup 162
workspace

definition 176

wrap
definition 176

wrapper
definition 176

Write coherency
about 143
and asynchronous clocks 148
and identical clocks 144
and synchronous clocks 145

Z
zero-cycle command

definition 176

	Documentation Overview
	DW_apb_uart Release Notes
	Contents
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions
	Table 1: Documentation Conventions

	Getting Help
	Additional Information

	Comments?

	1 Product Overview
	DesignWare AMBA System Overview
	DesignWare AMBA System Block Diagram
	Figure 1: Example of DW_apb_uart in a Complete System

	General Product Description
	DW_apb_uart Block Diagram
	Figure 2: DW_apb_uart Functional Block Diagram

	Features
	Standards Compliance
	Speed and Clock Requirements
	Verification Environment Overview
	Licenses
	Where To Go From Here
	Table 2: Tool Comparison

	2 Building and Verifying a Subsystem
	Setting up Your Environment
	Overview of the Configuration and Integration Process
	Figure 3: Connect Usage Flow
	Table 3: Connect Workspace Directory Contents

	Start Connect
	Check Your Environment
	Add DW_apb_uart to the Subsystem
	Figure 4: DW_apb_uart in Simple Subsystem

	Configure DW_apb_uart
	Complete Signal Connections
	Generate Subsystem RTL
	Create Gate-Level Netlist
	Checking Synthesis Status and Results
	Synthesis Output Files
	Running Synthesis from Command Line

	Create Component GTECH Simulation Model
	Verify Component
	Checking Simulation Status and Results
	Applying Default Verification Attributes

	Verify the Subsystem
	Formal Verification
	Simulate Subsystem
	Checking Subsystem Verification Status and Results

	Create a Batch Script
	Export the Subsystem

	3 Functional Description
	UART (RS232) Serial Protocol
	Figure 5: Serial Data Format
	Figure 6: Receiver Serial Data Sample Points
	Figure 7: Baud Clock Reference Timing Diagram

	IrDA 1.0 SIR Protocol
	Figure 8: IrDA SIR Data Format

	FIFO Support
	Figure 9: Timing for RAM Reads
	Figure 10: Timing for RAM Writes

	Clock Support
	Figure 11: RTL Diagram of Data Synchronization Module
	Figure 12: Timing Diagram for Data Synchronization Module

	Interrupts
	Auto Flow Control
	Figure 13: Auto Flow Control Block Diagram
	Figure 14: Auto RTS Timing
	Figure 15: Auto CTS Timing

	Programmable THRE Interrupt
	Figure 16: Flowchart of Interrupt Generation for Programmable THRE Interrupt Mode
	Figure 17: Flowchart of Interrupt generation when not in Programmable THRE Interrupt Mode

	Clock Gate Enable
	Figure 18: Clock Gate Enable Timing
	Figure 19: Resuming Clock(s) After Low Power Mode Timing

	DMA Support
	Figure 20: Breakdown of DMA Transfer into Burst Transactions
	Figure 21: Breakdown of DMA Transfer into Single and Burst Transactions
	Figure 22: Case 1 Watermark Levels
	Figure 23: Case 2 Watermark Levels
	Figure 24: UART Receive FIFO
	Figure 25: Burst Transaction - pclk = hclk
	Figure 26: Back-to-Back Burst Transactions - hclk = 2*pclk
	Figure 27: Single Transaction
	Figure 28: Burst Transaction + 3 Back-to-Back Singles - hclk = 2*pclk

	4 Parameters
	Parameter Descriptions
	Table 4: Top-Level Parameters
	Table 5: Legacy Parameters

	5 Signals
	DW_apb_uart Interface Diagram
	Figure 29: DW_apb_uart I/O Diagram

	DW_apb_uart Signal Descriptions
	Table 6: DW_apb_uart Signal Description

	6 Registers
	Register Memory Map
	Register and Field Descriptions
	RBR
	THR
	DLH
	DLL
	IER
	IIR
	Table 7: Interrupt Identification Register
	Table 8: Interrupt Control Functions

	FCR
	LCR
	MCR
	LSR
	MSR
	SCR
	LPDLL
	LPDLH
	SRBR
	STHR
	FAR
	TFR
	RFW
	USR
	TFL
	RFL
	SRR
	SRTS
	SBCR
	SDMAM
	SFE
	SRT
	STET
	HTX
	DMASA
	CPR
	UCV
	CTR

	7 Programming the DW_apb_uart
	Software Drivers

	8 Verification
	Overview of DW_apb_uart Testbench
	Figure 30: DW_apb_uart Testbench

	9 Integration Considerations
	Reading and Writing from an APB Slave
	Reading From Unused Locations
	Figure 31: Read/Write Locations for Different APB Bus Data Widths

	32-bit Bus System
	16-bit Bus System
	8-bit Bus System

	Write Timing Operation
	Figure 32: APB Write Transaction

	Read Timing Operation
	Figure 33: APB Read Transaction

	Accessing Top-level Constraints
	Coherency
	Writing Coherently
	Table 9: Upper Byte Generation
	Figure 34: Coherent Loading - Identical Synchronous Clocks
	Figure 35: Coherent Loading - Identical Synchronous Clocks
	Figure 36: Coherent Loading - Synchronous Clocks
	Figure 37: Coherent Loading - Synchronous Clocks
	Figure 38: Coherent Loading - Asynchronous Clocks
	Figure 39: Coherent Loading - Asynchronous Clocks

	Reading Coherently
	Table 10: Lower Byte Generation
	Figure 40: Coherent Registering - Synchronous Clocks
	Figure 41: Coherent Registering - Synchronous Clocks
	Figure 42: Coherency and Shadow Registering - Asynchronous Clocks
	Figure 43: Transfer to Shadowing Registers- Asynchronous Clocks

	A Building and Verifying Your DW_apb_uart
	Set up Your Environment
	Start coreConsultant
	Check Your Environment
	Configure DW_apb_uart
	Create Gate-Level Netlist
	Checking Synthesis Status and Results
	Synthesis Output Files
	Running Synthesis from Command Line

	Verifying the DW_apb_uart
	Creating GTECH Simulation Models
	Verifying the Simulation Model

	B Database Description
	Design/HDL Files
	RTL-Level Files
	Table 11: RTL-Level Files

	Simulation Model Files
	Table 12: Simulation Model Files

	Register Map Files
	Table 13: Header Files

	Synthesis Files
	Table 14: Synthesis Files

	Verification Reference Files
	Table 15: Verification Reference Files

	C DesignWare QuickStart Designs
	QuickStart Example Designs

	D Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

